Numerical Linear Algebra Exam-Summer 2023 Do **4** (four) problems

1. Suppose A is Hermitian positive definite.

(a) Prove that each principal submatrix of A is Hermitian positive definite.

(b) Prove that an element of A with largest magnitude lies on the diagonal.

(c) Prove that A has a Cholesky decomposition.

2. Let $P \in C^{m \times n}$ be a projector. Show that $||P||_2 = 1$ if and only if P is an orthogonal projector.

3. Let $A \in C^{m \times n}$, with $m \ge n$ and $rank(A) = p = n \ge 3$. Let a_1, a_2, \cdots denote the columns of A.

(a) Using the modified Gramm-Schmidt process, write out expressions for q_1, q_2, q_3 , the first three columns of Q in the QR decomposition of A.

(b) Show the vector q_3 found in part (a) is orthogonal to both q_1 and q_2 .

4. Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in C^{m \times n}$. Let u_j denote column j of U.

(a) Suppose rank(A)=p < n < m. Show $\{u_1, u_2, \dots, u_p\}$ is a basis for Col(A) and $\{u_{p+1}, u_{p+2}, \dots, u_m\}$ is a basis for $Null(A^*)$.

(b) Suppose A is full rank and $x \neq 0$. Let σ_i , $i = 1, \dots, n$ be the sigular values of A. Show

$$\sigma_1 \ge \frac{\|Ax\|_2}{\|x\|_2} \ge \sigma_n > 0.$$

If you want to use the property that $||A||_2 = \sigma_1$, then you must prove that.

- 5. Let $A \in C^{m \times m}$ be Hermetian.
- (a) Show that all eigenvalues of A are real.

(b) Define the stationary iterative method (a.k.a. fixed point method)

$$x^{(k+1)} = Ax^{(k)} + b. (1)$$

Suppose (1) has fixed-point x, namely x satisfies x = Ax + b. Show the iteration (1) converges to x from any starting guess $x^{(0)}$, that is $x^{(k)} \to x$ as $k \to \infty$, if and only if the eigenvalues λ_i of A satisfy $|\lambda_i| < 1, i = 1, \dots, m$. You may use the fact that Hermetian matrix A is unitarily diagonalizable.