Numerical Linear Algebra Exam-Summer 2023 Do 4 (four) problems

1. Suppose A is Hermitian positive definite.
(a) Prove that each principal submatrix of A is Hermitian positive definite.
(b) Prove that an element of A with largest magnitude lies on the diagonal.
(c) Prove that A has a Cholesky decomposition.
2. Let $P \in C^{m \times n}$ be a projector. Show that $\|P\|_{2}=1$ if and only if P is an orthogonal projector.
3. Let $A \in C^{m \times n}$, with $m \geq n$ and $\operatorname{rank}(A)=p=n \geq 3$. Let a_{1}, a_{2}, \cdots denote the columns of A.
(a) Using the modified Gramm-Schmidt process, write out expressions for q_{1}, q_{2}, q_{3}, the first three columns of Q in the QR decomposition of A.
(b) Show the vector q_{3} found in part (a) is orthogonal to both q_{1} and q_{2}.
4. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in C^{m \times n}$. Let u_{j} denote column j of U.
(a) Suppose $\operatorname{rank}(\mathrm{A})=p<n<m$. Show $\left\{u_{1}, u_{2}, \cdots, u_{p}\right\}$ is a basis for $\operatorname{Col}(A)$ and $\left\{u_{p+1}, u_{p+2}, \cdots, u_{m}\right\}$ is a basis for $\operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank and $x \neq 0$. Let $\sigma_{i}, i=1, \cdots, n$ be the sigular values of A. Show

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

If you want to use the property that $\|A\|_{2}=\sigma_{1}$, then you must prove that.
5. Let $A \in C^{m \times m}$ be Hermetian.
(a) Show that all eigenvalues of A are real.
(b) Define the stationary iterative method (a.k.a. fixed point method)

$$
\begin{equation*}
x^{(k+1)}=A x^{(k)}+b \tag{1}
\end{equation*}
$$

Suppose (1) has fixed-point x, namely x satisfies $x=A x+b$. Show the iteration (1) converges to x from any starting guess $x^{(0)}$, that is $x^{(k)} \rightarrow x$ as $k \rightarrow \infty$, if and only if the eigenvalues λ_{i} of A satisfy $\left|\lambda_{i}\right|<1, i=1, \cdots, m$. You may use the fact that Hermetian matrix A is unitarily diagonalizable.

