Numerical Linear Algebra Exam-May 2023 Do 4 (four) problems

1. (a) If P is a projector, prove that $\operatorname{null}(P) \cap \operatorname{range}(P)=\emptyset$ and $\operatorname{null}(P)=$ range $(I-P)$.
(b) Prove that P is an orthogonal projector if and only if it is Hermitian.
2. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.
(a) If E is $n \times n$ with $\|E\|<1$, then show $I+E$ is nonsingular and

$$
\left\|(I+E)^{-1}\right\| \leq \frac{1}{1-\|E\|}
$$

(b) If A is $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show $A+E$ is nonsingular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

3. Define the matrices A and B by

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 3 \\
0 & 1 & 3 \\
2 & 0 & 0
\end{array}\right)
$$

(a) Find a singular value decomposition of A.
(b) Find a QR decomposition of B.
4. Assume $A \in \mathcal{R}^{m \times m}$.
(a) Prove that $\langle x, y\rangle_{A}=x^{*} A y$ is an inner product on \mathcal{R}^{m} if and only if A is symmetric and positive definite.
(b) Assume that A is symmetric and positive definite. If x_{*} is the solution to $A x=b$ and $\left\{p_{1}, \cdots, p_{m}\right\}$ is an orthonormal basis for \mathcal{R}^{m} with respect to \langle,\rangle_{A} and $x_{*}=\sum c_{i} p_{i}$ give a formula for the c_{i}.
5. Let matrix $A \in \mathcal{C}^{m \times n}$ with $n<m$. Let a vector $b \in \mathcal{C}^{m}$, and let r denote the residual vector $r=b-A x$.
(a) Show that x solves the least-squares problem min $\|b-A x\|_{2}$ if and only if $r \in \operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank, and describe how to find the least-squares solution using the QR decomposition of A.

