Numerical Linear Algebra Exam-May 2023 Do **4** (four) problems

1. (a) If P is a projector, prove that $null(P) \cap range(P) = \emptyset$ and null(P) = range(I - P).

(b) Prove that P is an orthogonal projector if and only if it is Hermitian.

2. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.

(a) If E is $n \times n$ with ||E|| < 1, then show I + E is nonsingular and

$$||(I+E)^{-1}|| \le \frac{1}{1-||E||}.$$

(b) If A is $n \times n$ invertible and E is $n \times n$ with $||A^{-1}|| ||E|| < 1$, then show A + E is nonsingular and

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}.$$

3. Define the matrices A and B by

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 2 & 0 & 0 \end{pmatrix}$$

(a) Find a singular value decomposition of A.

(b) Find a QR decomposition of B.

4. Assume $A \in \mathcal{R}^{m \times m}$.

(a) Prove that $\langle x, y \rangle_A = x^* A y$ is an inner product on \mathcal{R}^m if and only if A is symmetric and positive definite.

(b) Assume that A is symmetric and positive definite. If x_* is the solution to Ax = b and $\{p_1, \dots, p_m\}$ is an orthonormal basis for \mathcal{R}^m with respect to \langle , \rangle_A and $x_* = \sum c_i p_i$ give a formula for the c_i .

5. Let matrix $A \in \mathcal{C}^{m \times n}$ with n < m. Let a vector $b \in \mathcal{C}^m$, and let r denote the residual vector r = b - Ax.

(a) Show that x solves the least-squares problem min $||b - Ax||_2$ if and only if $r \in Null(A^*)$.

(b) Suppose A is full rank, and describe how to find the least-squares solution using the QR decomposition of A.