1st Year Exam: Numerical Linear Algebra, May, 2022. Do 4 (four) problems.

1. Prove or provide a counterexample to each of the following.
(a) If matrix A is normal and triangular, then it is diagonal.
(b) Every matrix has a Schur factorization.
2. (a) For $v \in \mathbb{C}^{n}$, define $f_{A}(v):=\left(v^{*} A v\right)^{1 / 2}$. Under what condition(s) on $A \in \mathbb{C}^{n \times n}$ is $f_{A}(\cdot)$ a norm on \mathbb{C}^{n} ? (Full credit will only be given for a general condition or conditions. An example is not sufficient.) Prove that $f_{A}(\cdot)$ is a norm on \mathbb{C}^{n} under the condition(s) you require.
(b) Assuming the condition(s) you require in (a), given a matrix A, determine the best constants α and β to satisfy the inequality

$$
\alpha\|v\|_{2} \leq f_{A}(v) \leq \beta\|v\|_{2} .
$$

3. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$. Let u_{j} denote column j of U.
(a) Suppose $\operatorname{rank}(A)=p<n<m$. Show $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, is a basis for $\operatorname{Col}(A)$, and $\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$ is a basis for $\operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank and $x \neq 0$. Let $\sigma_{i}, i=1, \ldots, n$, be the singular values of A. Show

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

If you want to use the property that $\|A\|_{2}=\sigma_{1}$, then you must prove that also.
4. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a linearly independent set of vectors. Consider the Gram-Schmidt and modified Gram-Schmidt algorithms for computing an orthonormal basis $\left\{q_{1}, \ldots, q_{n}\right\}$ so that $\operatorname{Span}\left\{q_{1}, \ldots q_{k}\right\}=\operatorname{Span}\left\{a_{1}, \ldots a_{k}\right\}$, for each $k=1, \ldots, n$.
Suppose in computing q_{2}, an orthogonalization error is committed so that $q_{2}^{*} q_{1}=\epsilon$.
(a) Use the Gram-Schmidt algorithm to compute v_{3} so that $q_{3}=v_{3} /\left\|v_{3}\right\|$. What is $v_{3}^{*} q_{2}$?
(b) Use the modified Gram-Schmidt algorithm to compute v_{3} so that $q_{3}=v_{3} /\left\|v_{3}\right\|$. What is $v_{3}^{*} q_{2}$?
5. Compute the Cholesky decomposition of the following matrix, or explain why it does not exist.

$$
A=\left(\begin{array}{cccc}
1 & 1 / 2 & 2 & 3 \\
1 / 2 & 5 / 16 & 3 / 2 & 5 / 2 \\
2 & 3 / 2 & 17 & 17 \\
3 & 5 / 2 & 17 & 31
\end{array}\right) .
$$

