1st Year Exam: Numerical Linear Algebra, January, 2022. Do 4 (four) problems.

1. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$. Prove or provide a counterexample to the following statements. Justify each nontrivial step.
(a) The Frobenius norm satisfies $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$.
(b) $\|A\|_{2} \leq\|A\|_{F}$, where $\|A\|_{F}$ is the Frobenius norm of A.
2. Define the matrices A and B by

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 3 \\
0 & 1 & 3 \\
2 & 0 & 0
\end{array}\right)
$$

(a) Find an economy singular value decomposition of A.
(b) Find an economy QR decomposition of B.
3. Let $\|\cdot\|$ be a subordinate (induced) matrix norm.
(a) If E is $n \times n$ with $\|E\|<1$, then show $I+E$ is nonsingular and

$$
\left\|(I+E)^{-1}\right\| \leq \frac{1}{1-\|E\|}
$$

(b) If A is $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show $A+E$ is nonsingular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

4. Let $P \in \mathbb{C}^{m \times m}$ be a projector. Show that $\|P\|_{2}=1$ if and only if P is an orthogonal projector.
5. Suppose A is Hermitian positive definite.
(a) Prove that each principal submatrix of A is Hermitian positive definite.
(b) Prove that an element of A with largest magnitude lies on the diagonal.
(c) Prove that A has a Cholesky decomposition.
