Combinatorics Exam - August 2018

1. Find a generating function for the number of positive integer solutions to $x_{1}+$ $2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=n$.
2. Tickets numbered $\{1,2, \ldots, n\}$ are drawn from an urn at random one after the other without replacement. What is the probability that the number r is drawn on the $k^{\text {th }}$ drawing?

Among a population of $n+1$ people, a rumor is spread at random. One person tells the rumor to a second, who in turn repeats it to a third person, etc. What is the probability that the rumor will be told k times without being repeated to any person?
3. Prove that there exists no simple, bipartite, planar graph with minimum degree at least 4.
4. Let μ be the largest eigenvalue of the adjacency matrix of a graph G and Δ the maximum degree of G. Prove that $\mu \leq \Delta$.
(Hint: Consider the largest, in absolute value, coordinate of a corresponding eigenvector.)
5. Show that a k-regular graph of girth 4 has at least $2 k$ vertices, and a k-regular graph of girth 5 has at least $k^{2}+1$ vertices. Draw a 3 -regular graph of girth 4 with $2 \cdot 3=6$ vertices and a 3 -regular graph of girth 5 with $3^{2}+1=10$ vertices.
6. Let f_{n} be the number of all compositions of the integer n into odd parts. Find the exponential order of the numbers f_{n}.
7. Recall that a permutation is called even if it has an even number of even cycles, and it is called odd if it has an odd number of even cycles. Also recall that a derangement is a permutation with no 1-cycles.
Let A_{n} be the number of all even derangements of length n, and let B_{n} be the number of all odd derangements of length n. Find an exact formula for $A_{n}-B_{n}$.
8. (a) Prove that if a (v, k, λ) BIBD exists with block set \mathcal{B} on a point set V, then the set $\mathcal{B}^{\prime}=\{V \backslash B \mid B \in \mathcal{B}\}$ is a BIBD.
(b) Construct a $(7,4,2)$ BIBD.

