Topology Ph.D. Exam

May, 2014
Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper.

1. Compute $\pi_{1}\left(T^{2}\right)$ and $H_{*}\left(T^{2}\right)$ where $T^{2}=S^{1} \times S^{1}$ is the 2dimensional torus.
2. Let X be a connected completely regular topological space having more than one point. Can X be countable?
3. Prove that there is no map of degree 3 from S^{2} to the torus T^{2}.
4. Does there exists a covering space of the 2 -dimensional sphere with four points deleted with nontrivial abelian fundamental group?
5. Show that the 2 -dimensional sphere with four points deleted cannot be a topological group.

Answer the following with complete definitions or statements or short proofs.
6. State the Baire Category Theorem.
7. State the homology Mayer-Vietoris Theorem.
8. State the Urysohn Lemma.
9. Do the following short exact sequences always split

$$
\begin{gathered}
0 \rightarrow A \rightarrow B \rightarrow \mathbb{Z}^{2} \rightarrow 0 \\
0 \rightarrow \mathbb{Z} \rightarrow A \rightarrow B \rightarrow 0 ?
\end{gathered}
$$

10. Compute the Euler characteristic $\chi\left(\mathbb{R} P^{2} \times S^{1} \times S^{2} \times S^{3}\right)$.
11. Give an example of $A \subset X$ such that A is a retract of X but not a deformation retract.
12. State the Lefschetz Fixed Point Theorem.
13. Can irrational numbers be presented as a countable union of closed in \mathbb{R} subsets?
14. Draw a picture of the universal cover of the 2 -sphere with the segment joining the north and south poles.
15. List all i for which there is a closed orientable 6 -manifold M with $H_{i}(M)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$.
