Topology Ph.D Exam

August 2012

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper

- 1. Prove that the 3-sphere S^3 is not homeomorphic to the 3-space \mathbb{R}^3 .
- 2 . Let $A\subset\mathbb{R}^2$ be an infinite countable subspace.
- (a) Can A be connected?
- (b) Is $\mathbb{R}^2 \setminus A$ connected?
- 3. Construct a map $f: T^2 \to S^2$ of degree 3 where $T^2 = S^1 \times S^1$ is a torus.
- 4. Show that there is no map $S^2 \to T^2$ of degree 3.
- 5. Let GL_n be the space of all invertible real $n \times n$ -matrices. Is GL_n compact? Is it connected?

Answer the following with complete definitions or statements or short proofs.

- 6. Is the 2-sphere S^2 with k points removed homeomorphic to a topological group for
- (a) k = 1? (b) k = 2? (c) k = 3? and (d) k = 0?
- 7. State the Lefschetz Fixed Point Theorem.
- 8. Compute the Euler characteristic $\chi(\mathbb{C}P^5 \times \mathbb{R}P^5 \times S^5 \times S^2)$.
- 9. State the Baire Category Theorem
- 10. Does every function $f: \mathbb{N} \to \mathbb{R}$ admit a continuous extension $\overline{f}: \beta \mathbb{N} \to \mathbb{R}$ to the Stone–Čech compactification?
- 11. State the Five Lemma.
- 12. What can you say about the k-th cohomology group of a closed oriented manifold for
- (a) k = n?
- (b) k = n 1?
- 13. Does there exist a covering space of the figure eight that has a non-trivial abelian fundamental group?
- 14 Describe all connected subsets of the real line \mathbb{R} .
- 15. State the Contraction Mapping Theorem.

1