Name: \qquad UFID: \qquad
(First) please print
(Last)
PLEASE PRINT

1. For each fixed $n, X_{n}^{1}, X_{n}^{2}, \cdots, X_{n}^{n}$ are independent random variables and have the same Binomial distribution, that is, $\mathbb{P}\left(X_{n}^{i}=1\right)=p_{n}$ and $\mathbb{P}\left(X_{n}^{i}=0\right)=$ $1-p_{n}$ for $i=1,2, \cdots, n$. Let $S_{n}=X_{n}^{1}+X_{n}^{2}+\cdots+X_{n}^{n}$. Given the condition that $n p_{n}$ converges to a positive constant β as n goes to ∞, find the limit distribution of S_{n} and prove it.
2. Let X and Y be two independent random variables with $\mathbb{E}[Y]=0$. Show that for $p \geq 1$, we have

$$
\mathbb{E}|X+Y|^{p} \geq \mathbb{E}|X|^{p} .
$$

3. Let X be a positive random variable with a probability density function $f(x)$ that is continuous and $U_{n}=n X-[n X]$, where $[a]$ means the largest integer which is less than a. Find the limit distribution of U_{n} as n goes to ∞.
4. Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. random variables with probability density function $f(x)$, and $M=\max \left(X_{1}, X_{2}, \cdots, X_{n}\right)$. Find the conditional expectation $\mathbb{E}\left[X_{1} \mid M\right]$.
5. For a continuous function $f(x)$ on $[0,1]$, define

$$
P_{n}(x)=\sum_{i=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

Show that $P_{n}(x)$ converges to $f(x)$ on $[0,1]$ as n goes to infinity.
6. Let S_{n} be a one-dimensional simple random walk, that is, $S_{n}=X_{1}+\cdots+X_{n}$ where $X_{1}+, \cdots, X_{n}$ are i.i.d. random variables with $\mathbb{P}\left(X_{1}=+1\right)=\mathbb{P}\left(X_{1}=\right.$ $-1)=1 / 2$, and $S_{0}=0$. and let

$$
R_{n}=1+\max _{0 \leq k \leq n} S_{k}-\min _{0 \leq k \leq n} S_{k}
$$

be the number of points visited by time n. Prove that R_{n} / \sqrt{n} converges weakly to some limit (in distribution).
7. Let B_{t} be standard Brownian motion with $B_{0}=0$ and $\tau=\inf \left\{t: B_{t}=a+b t\right\}$, where $a>0$ and b are two constants. Prove that
a). $\quad \mathbb{E}_{0}\left[e^{-\lambda \tau}\right]=\exp \left\{-a b-a \sqrt{b^{2}+2 \lambda}\right\}$
b). $\quad \mathbb{P}_{0}(\tau<\infty)=\exp \{-2 a b\}$.
8. Let $\left\{X_{n}, n=0,1,2,3 \cdots\right\}$ be a Markov chain on a countable irreducible state space \mathbf{S}. Let ϕ be a nonnegative function with

$$
\mathbb{E}\left[\phi\left(X_{1}\right) \mid X_{0}=x\right] \leq \phi(x)
$$

for all but a finite number of x. Prove that if $\{x \mid \phi(x) \leq M\}$ is finite for any $M<\infty$, then the Markov chain $\left\{X_{n}, n=0,1,2,3 \cdots\right\}$ is recurrent.

