Probability Exam

Name:

\qquad UFID: \qquad
(First) PLEASE PRINT (Last)
please print

1. Let X_{1}, X_{2} be two independent random variables with the same uniform distribution on $(\theta-1 / 2, \theta+1 / 2)$, and let $Y_{1}=\min \left(X_{1}, X_{2}\right), Y_{2}=\max \left(X_{1}, X_{2}\right)$,
(a). Find $\mathbb{P}\left(Y_{1} \leq \theta \leq Y_{2}\right)$,
(b). Find $\mathbb{P}\left(Y_{1} \leq \theta \leq Y_{2} \mid Y_{2}-Y_{1} \geq 1 / 2\right)$.
2. Let $\phi(t)$ be a characteristic function, prove that
(a). $1-\operatorname{Re}(\phi(2 t)) \leq 4(1-\operatorname{Re}(\phi(t)))$,
(b). $1-|\phi(2 t)|^{2} \leq 4\left(1-|\phi(t)|^{2}\right)$.
3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. nonnegative random variables. let $S_{0}=0$, and $S_{n}=X_{1}+\cdots+X_{n}$. For $t>0$, we define

$$
\left\{\omega \mid N_{t}(\omega)=n\right\}=\left\{\omega \mid S_{n}(\omega) \leq t<S_{n+1}(\omega)\right\}
$$

show that

$$
\mathbb{E}\left(N_{t}(\omega)\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(S_{n}(\omega) \leq t\right)
$$

4. Let X_{1}, X_{2}, \cdots be a sequence of strictly positive random variables such that

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=f_{n}\left(X_{n}\right) .
$$

For $n \geq 2$, let

$$
M_{n}=\frac{X_{1} X_{2} \cdots \cdots X_{n}}{f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \cdots f_{n-1}\left(X_{n-1}\right)}
$$

(a). Show that for $n \geq 2, M_{n}$ is a \mathcal{F}_{n} - martingale.
(b). Does this martingale converges almost surely and in L^{1} ? Explain it.
5. Let $\left\{M_{n}, n \geq 0\right\}$ be a sequence of integrable random variables adapted to a filtration \mathcal{F}_{n}. Assume that for each bounded stopping time $T, \mathbb{E}\left(M_{T}\right)=\mathbb{E}\left(M_{0}\right)$, show that $\left\{M_{n}, n \geq 0\right\}$ is a martingale.
6. Let X and Y be random variables such that $\mathbb{E}\left(X^{2}\right)<\infty$ and $\mathbb{E}\left(Y^{2}\right)<\infty, \mathbb{E}(X \mid Y)=Y$ and $\mathbb{E}(Y \mid X)=X$. Show that $X=Y$ a.s.
7. Let X, Y be two independent random variables with $\mathbb{E}[Y]=0$. Show that for $p \geq 1$

$$
\mathbb{E}\left[|X|^{p}\right) \leq \mathbb{E}\left[|X+Y|^{p}\right] .
$$

8. Let (X, Y) be a random point on a unit circle with uniform distribution, that is

$$
\mathbb{P}((X, Y) \in A)=\frac{\operatorname{length}(A)}{2 \pi}
$$

for any Borel subset A of $C_{2}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$. Find the marginal distribution of X.
9. Let \mathcal{F}_{n} be a filtration, $\left|X_{n}\right| \leq Y, Y$ integrable. Suppose that $X_{n} \longrightarrow X$ a.e. Using the martingale convergence theorem to prove that

$$
\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right] \longrightarrow \mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right] \quad \text { a.e. }
$$

10. Let $Y \in L^{p},\left|X_{n}\right| \leq Y$ and $X_{n} \longrightarrow X$ in distribution. Show that X_{n} converges to X in L^{p}.
