Spring, 2005

- 1. Let X_1 , X_2 be two independent random variables with the same uniform distribution on $(\theta 1/2, \theta + 1/2)$, and let $Y_1 = \min(X_1, X_2), Y_2 = \max(X_1, X_2),$
 - (a). Find $\mathbb{P}(Y_1 \leq \theta \leq Y_2)$,
 - (b). Find $\mathbb{P}(Y_1 \le \theta \le Y_2 | Y_2 Y_1 \ge 1/2)$.
- 2. Let $\phi(t)$ be a characteristic function, prove that
 - (a). $1 Re(\phi(2t)) \le 4(1 Re(\phi(t))),$
 - (b). $1 |\phi(2t)|^2 \le 4(1 |\phi(t)|^2).$
- 3. Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. nonnegative random variables. let $S_0 = 0$, and $S_n = X_1 + \cdots + X_n$. For t > 0, we define

$$\{\omega | N_t(\omega) = n\} = \{\omega | S_n(\omega) \le t < S_{n+1}(\omega)\}$$

show that

$$\mathbb{E}(N_t(\omega)) = \sum_{n=1}^{\infty} \mathbb{P}(S_n(\omega) \le t).$$

4. Let X_1, X_2, \cdots be a sequence of strictly positive random variables such that

$$\mathbb{E}(X_{n+1}|\mathcal{F}_n) = f_n(X_n).$$

For $n \geq 2$, let

$$M_n = \frac{X_1 X_2 \cdots X_n}{f_1(X_1) f_2(X_2) \cdots f_{n-1}(X_{n-1})}$$

- (a). Show that for $n \geq 2$, M_n is a \mathcal{F}_n -martingale.
- (b). Does this martingale converges almost surely and in $L^{1?}$ Explain it.
- 5. Let $\{M_n, n \ge 0\}$ be a sequence of integrable random variables adapted to a filtration \mathcal{F}_n . Assume that for each bounded stopping time T, $\mathbb{E}(M_T) = \mathbb{E}(M_0)$, show that $\{M_n, n \ge 0\}$ is a martingale.
- 6. Let X and Y be random variables such that $\mathbb{E}(X^2) < \infty$ and $\mathbb{E}(Y^2) < \infty$, $\mathbb{E}(X|Y) = Y$ and $\mathbb{E}(Y|X) = X$. Show that X = Y a.s.

7. Let X, Y be two independent random variables with $\mathbb{E}[Y] = 0$. Show that for $p \ge 1$

$$\mathbb{E}[|X|^p) \le \mathbb{E}[|X+Y|^p].$$

8. Let (X, Y) be a random point on a unit circle with uniform distribution, that is

$$\mathbb{P}((X,Y) \in A) = \frac{\operatorname{length}(A)}{2\pi}$$

for any Borel subset A of $C_2 = \{(x, y) | x^2 + y^2 = 1\}$. Find the marginal distribution of X.

9. Let \mathcal{F}_n be a filtration, $|X_n| \leq Y$, Y integrable. Suppose that $X_n \longrightarrow X$ a.e. Using the martingale convergence theorem to prove that

$$\mathbb{E}[X_n|\mathcal{F}_n] \longrightarrow \mathbb{E}[X|\mathcal{F}_\infty] \qquad a.e.$$

10. Let $Y \in L^p$, $|X_n| \leq Y$ and $X_n \longrightarrow X$ in distribution. Show that X_n converges to X in L^p .