PH.D QUALIFICATION EXAMINATION ON PARTIAL DIFFERENTIAL EQUATIONS, 2013

NAME:

1.Let Ω be an open subset of \mathbb{R}^{n} and let $u \in C^{2}(\Omega)$ be a harmonic function in Ω. Prove that u is analytic in Ω.
2.Let U be an open and bounded set in \mathbb{R}^{n} with smooth boundary. Suppose u_{1} and u_{2} are both smooth solutions to

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=0, \quad \text { in } \quad U_{T}:=U \times(0, T] \\
u=g, \quad \text { on } \quad \partial U \times[0, T]
\end{array}\right.
$$

If $u_{1}(x, T)=u_{2}(x, T)$ for all $x \in U$, prove that $u_{1} \equiv u_{2}$ within U_{T}.
3. Suppose u is a smooth solution to

$$
u_{t t}-\Delta u=0, \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty)
$$

and

$$
u \equiv u_{t} \equiv 0 \quad \text { on } \quad B\left(x_{0}, t_{0}\right) \times\{t=0\}
$$

Let

$$
C=\left\{(x, t)\left|\quad 0 \leq t \leq t_{0}, \quad\right| x-x_{0} \mid \leq t_{0}-t . \quad\right\}
$$

Prove that $u \equiv 0$ within C.
4. Use characteristics to solve the following equation:

$$
\left\{\begin{array}{l}
x_{1} u_{x_{1}}+2 x_{2} u_{x_{2}}+u_{x_{3}}=3 u, \quad \mathbb{R}_{+}^{3} \\
u\left(x_{1}, x_{2}, 0\right)=g\left(x_{1}, x_{2}\right) \quad \partial \mathbb{R}_{+}^{3}
\end{array}\right.
$$

where g is a given smooth function.
5.Fix $\alpha>0$ and let $U=B(0,1)$ (open ball). Show there exists a constant C, depending only on n and α, such that

$$
\int_{U} u^{2} d x \leq C \int_{U}|D u|^{2} d x
$$

provided

$$
|\{x \in U \mid \quad u(x)=0\}| \geq \alpha, \quad u \in H^{1}(U)
$$

Date: December 20, 2013.
6. Use Hopf-Lax formula to find a solution of

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2}|D u|^{2}=0, \quad \mathbb{R}^{n} \times(0, \infty) \\
u=-\frac{1}{2}|x|, \quad \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

Is this solution unique in the weak sense?
7. Let U be a bounded subset of $\mathbb{R}^{n}, u \in W^{2, p}(U) \cap W_{0}^{1, p}(U)$ and $2 \leq p<$ ∞. Prove that

$$
\int_{U}|D u|^{p} d x \leq C\left(\int_{U}|u|^{p} d x\right)^{\frac{1}{2}}\left(\int_{U}\left|D^{2} u\right|^{p} d x\right)^{\frac{1}{2}}
$$

for some C independent of u.

