University of Florida
GNA QUALIFYING EXAM JANUARY 8, 2016
Name:
ID \#:
Instructor: Maia Martcheva

Directions: This is Part I of the PhD qualifying exam in Numerical Analysis or the semester Exam on MAD6407. If you are taking the PhD qualifying exam, you must take both Part I and Part II (numerical linear algebra) in one sitting. You must show all your work as neatly and clearly as possible and indicate the final answer clearly.

Problem	Possible	Points
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

(1) (20 points) A forth degree polynomial $P(x)$ satisfies $\Delta^{4} P(0)=24, \Delta^{3} P(0)=6$, and $\Delta^{2} P(0)=0$, where $\Delta P(x)=P(x+1)-P(x)$. Compute $\Delta^{2} P(10)$.
(2) (20 points) Consider the fixed point iteration

$$
x_{n+1}=\phi\left(x_{n}\right), \quad n-0,1,2, \ldots
$$

where

$$
\phi(x)=A x+B x^{2}+C x^{3}
$$

Given a positive number α, determine the constants A, B, C such that the iteration converges locally to $1 / \alpha$ with order $p=3$.
(3) (20 points) This problem has the following parts:
(a) Find α, β and γ so that the quadrature formula has a maximum degree of precision. What is the exact degree of precision of this quadrature formula?

$$
\int_{0}^{2} f(x) d x \approx \alpha(f(0)+f(2))+\beta\left(f^{\prime}(0)-f^{\prime}(2)\right)+\gamma\left(f^{\prime \prime}(0)-f^{\prime \prime}(2)\right)
$$

(b) Suggest your own quadrature formula for the integral

$$
\int_{0}^{2} f(x) d x
$$

Your formula should have expected degree of precision at least four (you don't have to compute to demonstrate that).
(4) (20 points) For the function

$$
f(x)=\sqrt[m]{|x|}, \quad m \neq \frac{1}{2}
$$

in the interval $[-1,1]$, find the polynomial of minimax approximation of degree 2 . What is the minimax error? What happens if $m=\frac{1}{2}$?
(5) (20 points) Prove that Gaussian quadrature formula (for any n) in the interval $[-1,1]$ and with weight $w(x)=1$ is exact for all odd functions.

