University of Florida

$$
\begin{aligned}
& \text { Name: } \\
& \text { ID \#: } \\
& \text { Instructor: Maia Martcheva } \\
& \hline
\end{aligned}
$$

Directions: You have 2 hours to answer the following questions. You must show all your work as neatly and clearly as possible and indicate the final answer clearly. You may not use a calculator.

Problem	Possible	Points
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

(1) (20 points) Show that the fixed point equation $x=f(x)$ with a fixed point α can be solved iteratively, if $f^{\prime}(\alpha) \neq 1$, by one of the following fixed point iteration formulas: (a) $x_{n+1}=f\left(x_{n}\right)$
(b) $x_{n+1}=f^{-1}\left(x_{n}\right)$.

Hint: The following formula for the derivative of an inverse is valid

$$
\left[f^{-1}\right]^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

(c) $x_{n+1}=\left(x_{n}+f\left(x_{n}\right)\right) / 2$
(2) (20 points) Let $f(x) \in C[a, b]$. Let $p(x)$ be a polynomial for which

$$
\left\|f^{\prime}-p\right\|_{\infty} \leq \epsilon
$$

and define

$$
q(x)=f(a)+\int_{0}^{x} p(t) d t, \quad a \leq x \leq b .
$$

Show that $q(x)$ is a polynomial that satisfies

$$
\|f-q\|_{\infty} \leq \epsilon(b-a)
$$

(3) (20 points) Consider the integral

$$
\begin{equation*}
\int_{0}^{\pi} x^{2} \cos x d x \tag{1}
\end{equation*}
$$

(a) Consider a quadrature rule of the form

$$
\int_{0}^{\pi} x^{\alpha} f(x) d x \approx A f(0)+B \int_{0}^{\pi} f(x) d x
$$

where $\alpha>-1, \alpha \neq 0$ is a parameter. Determine the constants A, B so that the quadrature formula has degree of exactness one.
(b) Use the formula in part (a) to approximate the integral (1).
(4) (20 points) For the function $f(x)=\ln (1+x)$ for $x \in[0,1]$, find the minimax approximation polynomial of degree one. Give the exact value of the minimax error.
(5) (20 points) Assume that you are solving the initial value problem

$$
\begin{aligned}
& y^{\prime}=f(t, y) \quad a \leq t \leq b \\
& y(a)=\alpha
\end{aligned}
$$

(a) Derive the formula for the global error of thenumerical solutions for the ODE problem above obtained via Euler's method.
Hint: The formula is $\left(M=\left\|Y^{\prime \prime}\right\|_{\infty}\right)$:

$$
\left|Y\left(t_{i}\right)-w_{i}\right|<\frac{h M}{2 L}\left[e^{L(b-a)}-1\right] .
$$

(b) Compute the value of $M=\left\|Y^{\prime \prime}\right\|_{\infty}$ necessary to apply the global error formula above to the specific ODE problem

$$
\begin{aligned}
& y^{\prime}=\sin (t+2 y)+e^{t} \quad 0 \leq t \leq 1 \\
& y(0)=0
\end{aligned}
$$

