Numerical Analysis Prelim, May 10, 2013

Do 5 of 7

1. (General Fixed Point Theory) Assume that $g(x)$ is continuously differentiable on $[a, b]$, and that $g([a, b]) \in[a, b]$, and that

$$
\lambda=\max _{a \leq x \leq b}\left|g^{\prime}(x)\right|<1
$$

Show that the following are true:
(i) $x=g(x)$ has a unique solution α in $[a, b]$,
(ii) For any initial choice x_{0} in $[a, b]$, with $x_{n+1}=g\left(x_{n}\right), \lim _{n \rightarrow \infty} x_{n}=\alpha$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha-x_{n+1}}{\alpha-x_{n}}=g^{\prime}(\alpha) . \tag{iii}
\end{equation*}
$$

(iv) Does the statement remain true if the interval (a, b) is open?
(v) Assume in addition that $g^{\prime}(\alpha)=0$ and show that the sequence converges quadratically. (vi) (Newton's Method) Assume that $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ are continuous in $[a, b]$, and that for some $\alpha \in[a, b], f(\alpha)=0$, and $f^{\prime}(\alpha) \neq 0$. Then if x_{0} is chosen close enough to α, the iterates

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

converge to α. Moreover they converge quadratically.
(vii) State Newton's method for $f(x)=0$ if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
2. Theorem: (Lagrange Error Formula) Let $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ be distinct real numbers, $l_{j}(x)$ be the corresponding Lagrange polynomials and suppose that f is a given real-valued function with $n+1$ continuous derivatives. Let I be an interval containing all of the x_{k}, and t. Then there is a $\xi \in I$ such that

$$
f(t)-\sum_{j=0}^{n} f\left(x_{j}\right) l_{j}(t)=\frac{\left(t-x_{0}\right)\left(t-x_{1}\right) \ldots\left(t-x_{n}\right)}{(n+1)!} f^{(n+1)}(\xi)
$$

3. Let $\left\{p_{n}\right\}$ be an orthogonal family on $[a, b]$ constructed by using the Gram-Schmidt process on $1, t, t^{2}, t^{3} \ldots \ldots$. Prove that all of the zeros of $p_{n}(t)$ are contained in $[a, b]$.
4. Given Simpson's rule for numerical integration, i.e.

$$
\int_{t_{n}}^{t_{n+2}} f(x) d x \approx \frac{2 h}{6}\left(f\left(t_{n}\right)+4 f\left(t_{n+1}\right)+f\left(t_{n+2}\right)\right), \quad t_{n}=t_{0}+n h
$$

(i) Explain where the formula comes from (you don't need to derive it)
(ii) Prove that it is exact for cubic polynomials
(iii) Show that the local error is $O\left(h^{5}\right)$.
5. Gaussian Quadrature: Show that you can find n points on an interval $[a, b]$ (tell us which points), and a formula which uses only the value of the function $f(x)$ at these points, and weights w_{k} such that the approximation formula

$$
\int_{a}^{b} f(x) d x \approx I_{n}(f) \equiv \sum_{k=1}^{n} w_{k} f\left(x_{k}\right)
$$

is exact for polynomials of order $2 n-1$.
6. Assume that you are solving the initial value problem $y^{\prime}(t)=f(t, y)$, with $y(0)$ given. Assume further that $f(t, y)$ satisfies the Lipschitz condition $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$ for all $t \in[a, b]$. Explain Euler's method and derive a cumulative error formula, not just a local error formula.
7. (General Multistep Methods) Assume that you are solving the initial value problem $y^{\prime}(t)=$ $f(t, y)$, with $y(0)$ given. Consider a general formula of the type

$$
y_{n+1}=\sum_{j=0}^{p} a_{j} y_{n-j}+h \sum_{j=-1}^{p} b_{j} f\left(x_{n-j}, y_{n-j}\right) .
$$

Furthermore, let us define the local truncation error as

$$
T_{n}(Y)=Y\left(t_{n+1}\right)-\left(\sum_{j=0}^{p} a_{j} Y\left(t_{n-j}\right)+h \sum_{j=-1}^{p} b_{j} f\left(t_{n-j}, Y\left(t_{n-j}\right)\right)\right)
$$

where $Y\left(t_{n}\right)$ is the exact value of the initial value problem and y_{n} is the approximated value of the problem at t_{n}. We let

$$
\tau_{n}(Y)=\frac{1}{h} T_{n}(Y)
$$

Given this prove the following

Let $m \geq 1$ be a given integer. In order that $\max |\tau(Y)| \rightarrow 0$ as $h \rightarrow 0$ for all continuously differentiable $Y(x)$, it is necessary and sufficient that

$$
\begin{equation*}
\sum_{j=0}^{p} a_{j}=1, \quad \text { and } \quad-\sum_{j=0}^{p} j a_{j}+\sum_{j=-1}^{p} b_{j}=1 \tag{1}
\end{equation*}
$$

Furthermore, for $\tau(h)=O\left(h^{m}\right)$ for functions $Y(x)$ that are $m+1$ times continuously differentiable, it is necessary and sufficient that (??) hold and

$$
\sum_{j=0}^{p}(-j)^{i} a_{j}+i \sum_{j=-1}^{p}(-j)^{i-1} b_{j}=1, \quad \text { for } \quad i=2,3, \ldots m
$$

Appendix: Recall that the Hermite polynomials can be written as

$$
H_{n}(x)=\sum_{j=1}^{n} f\left(x_{j}\right) h_{j}(x)+\sum_{j=1}^{n} f^{\prime}\left(x_{j}\right) \tilde{h}_{j}(x) .
$$

If the points x_{j} are chosen to be the zeros of the orthogonal polynomials on $[a, b]$, then

$$
h_{j}(x)=\frac{\psi_{n}(x) l_{j}(x)}{\psi_{n}^{\prime}\left(x_{j}\right)},
$$

where $l_{j}(x)$ is the Lagrange interpolant for x_{j}.

