Numerical Analysis Qualifying Exam (May 11, 2012). Answ

Answer any 8 questions.

1. Suppose that A and $B \in \mathbb{C}^{n \times n}$ are Hermitian matrices. If $\sigma(A)$ denotes the largest eigenvalue of A, then show that

$$\sigma(A+B) \le \sigma(A) + \sigma(B).$$

- 2. Suppose that $A \in \mathbb{C}^{n \times n}$ is an invertible matrix, $u \in \mathbb{C}^n$, and $v \in \mathbb{C}^n$. Let v^* denote the conjugate transpose of v.
 - (a) Show that

$$\det(A - uv^*) = (1 - v^*A^{-1}u) \det A.$$

(b) Show that $A - uv^*$ is invertible if and only if $v^*A^{-1}u \neq 1$. Moreover, if $v^*A^{-1}u \neq 1$, then

$$(A - uv^*)^{-1} = A^{-1} + \left(\frac{1}{1 - v^* A^{-1}u}\right) A^{-1}uv^* A^{-1}.$$

- 3. (a) Suppose p and $q \in \mathbb{R}$ with p and q positive and $p^{-1} + q^{-1} = 1$. Show that for any matrix $A \in \mathbb{C}^{m \times n}$, we have $||A||_p = ||A^*||_q$.
 - (b) Prove that

$$||A||_2^2 \le ||A||_p ||A||_q$$

for any $A \in \mathbb{C}^{m \times n}$ and any positive p and $q \in \mathbb{R}$ with $p^{-1} + q^{-1} = 1$.

- 4. (a) For any matrices A and B, show that the nonzero eigenvalues of AB and BA are the same.
 - (b) If AB is normal, $\|\cdot\|_2$ is the 2-norm of a matrix, and $\|\cdot\|$ is an induced matrix norm, then show that $\|AB\|_2 \leq \|BA\|$.
- 5. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $||P Q||_2 \leq 1$.
- 6. Consider the following minimization problem:

$$\tau_n = \inf_{\deg Q < n} \left(\max_{x \in [-1,1]} |x^n + Q(x)| \right).$$

Prove that $\tau_n = \frac{1}{2^{n-1}}$, the infimum is in fact a minimum, attained at a unique Q^* satisfying

$$x^{n} + Q^{*}(x) = \frac{1}{2^{n-1}}T_{n}(x),$$

where $\{T_n\}$ are the Chebyshev's polynomials.

- 7. Design an algorithm with a cubic rate of convergence for computing the quantity $\sqrt{5}$. Prove that your algorithm is indeed cubic. Find an interval $[a, b] \subset [0, +\infty)$ such that any iterative sequence starting in [a, b] will converge to $\sqrt{5}$.
- 8. State the classical Hermite interpolation problem. Prove that the problem is well-posed, i.e. prove the existence and uniqueness of solutions. Derive the error formula for the interpolating polynomial.
- 9. Describe the Simpson's Rule for numerical integration. State (without proof) the error formula of the Trapezoidal Rule. Show that the error bound cannot be improved.
- 10. Let w(x) > 0 be integrable on [a, b]. Define an orthogonal polynomial family $\{\phi_n\}$ on [a, b] with weight w(x). Prove that between two consecutive zeros of ϕ_n there is exactly one zero of ϕ_{n-1} . You may use the triple recursion formula without proof.