Numerical Analysis Qualifying Exam (September, 2011). Answer any 8 questions.

1. (a) For any matrices A and B, show that the nonzero eigenvalues of $A B$ and $B A$ are the same. (b) If $A B$ is normal, $\|\cdot\|_{2}$ is the 2 -norm of a matrix, and $\|\cdot\|$ is an induced matrix norm, then show that $\|A B\|_{2} \leq\|B A\|$.
2. (a) Suppose p and $q \in \mathbb{R}$ with p and q positive and $p^{-1}+q^{-1}=1$. Show that for any matrix $A \in \mathbb{C}^{m \times n}$, we have $\|A\|_{p}=\left\|A^{*}\right\|_{q}$. (b) Prove that

$$
\|A\|_{2}^{2} \leq\|A\|_{p}\|A\|_{q}
$$

for any $A \in \mathbb{C}^{m \times n}$ and any positive p and $q \in \mathbb{R}$ with $p^{-1}+q^{-1}=1$.
3. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $\|P-Q\|_{2} \leq 1$.
4. Let P and Q be Hermitian positive definite matrices. Prove that

$$
x^{*} P x \leq x^{*} Q x \text { for all } x \in \mathbb{C}^{n}
$$

if and only if

$$
x^{*} Q^{-1} x \leq x^{*} P^{-1} x \text { for all } x \in \mathbb{C}^{n} .
$$

5. Suppose A is a Hermitian positive definite matrix split into $A=C+C^{*}+D$ where D is also Hermitian positive definite. Prove that $B=C+\omega^{-1} D$ is invertible whenever $0<\omega<2$. Consider the iteration $x_{n+1}=x_{n}+B^{-1}\left(b-A x_{n}\right)$, with any initial iterate x_{0}. Prove that x_{n} converges to $x=A^{-1} b$ whenever $0<\omega<2$.
6. Let $f: R \rightarrow R$ be a contraction with constant $\lambda \in(0,1)$. Prove that there exists a unique fixed point α of f. Prove the inequality

$$
\left|f^{n}(x)-\alpha\right| \leq \frac{\lambda^{n}}{1-\lambda}|f(x)-x|, \quad \forall x \in R, \quad \forall n \in N .
$$

7. Derive the two point Gaussian quadrature for approximating $\int_{-1}^{1} f(x) x^{2} d x$.
8. State the Hermite interpolation problem. Prove that the problem is well-posed, i.e. prove the existence and uniqueness of solutions. Derive the error formula for the interpolating polynomial.
9. Describe the Simpson's rule for numerical integration $(n=3)$. State and prove the error formula of the Simpson's rule.
10. Let $w(x)>0$ be integrable on $[a, b]$. Define an orthogonal polynomial family $\left\{\phi_{n}\right\}$ on $[a, b]$ with weight $w(x)$. Prove that (i) $\phi_{n}(x)$ has n distinct roots in the interval (a, b), and (ii) between any two consecutive zeros of ϕ_{n} there is a zero of ϕ_{n-1}.
