Numerical Analysis Qualifying Exam (September, 2011). Answer any 8 questions.

- (a) For any matrices A and B, show that the nonzero eigenvalues of AB and BA are the same.
 (b) If AB is normal, || · ||₂ is the 2-norm of a matrix, and || · || is an induced matrix norm, then show that ||AB||₂ ≤ ||BA||.
- 2. (a) Suppose p and $q \in \mathbb{R}$ with p and q positive and $p^{-1} + q^{-1} = 1$. Show that for any matrix $A \in \mathbb{C}^{m \times n}$, we have $\|A\|_p = \|A^*\|_q$. (b) Prove that

$$||A||_2^2 \le ||A||_p ||A||_q$$

for any $A \in \mathbb{C}^{m \times n}$ and any positive p and $q \in \mathbb{R}$ with $p^{-1} + q^{-1} = 1$.

- 3. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $||P Q||_2 \leq 1$.
- 4. Let P and Q be Hermitian positive definite matrices. Prove that

$$x^* Px \leq x^* Qx$$
 for all $x \in \mathbb{C}^n$

if and only if

$$x^*Q^{-1}x \le x^*P^{-1}x$$
 for all $x \in \mathbb{C}^n$

- 5. Suppose A is a Hermitian positive definite matrix split into $A = C + C^* + D$ where D is also Hermitian positive definite. Prove that $B = C + \omega^{-1}D$ is invertible whenever $0 < \omega < 2$. Consider the iteration $x_{n+1} = x_n + B^{-1}(b - Ax_n)$, with any initial iterate x_0 . Prove that x_n converges to $x = A^{-1}b$ whenever $0 < \omega < 2$.
- 6. Let $f : R \to R$ be a contraction with constant $\lambda \in (0, 1)$. Prove that there exists a unique fixed point α of f. Prove the inequality

$$|f^n(x) - \alpha| \le \frac{\lambda^n}{1 - \lambda} |f(x) - x|, \quad \forall x \in R, \ \forall n \in N.$$

- 7. Derive the two point Gaussian quadrature for approximating $\int_{-1}^{1} f(x) x^2 dx$.
- 8. State the Hermite interpolation problem. Prove that the problem is well-posed, i.e. prove the existence and uniqueness of solutions. Derive the error formula for the interpolating polynomial.
- 9. Describe the Simpson's rule for numerical integration (n = 3). State and prove the error formula of the Simpson's rule.
- 10. Let w(x) > 0 be integrable on [a, b]. Define an orthogonal polynomial family $\{\phi_n\}$ on [a, b] with weight w(x). Prove that (i) $\phi_n(x)$ has n distinct roots in the interval (a, b), and (ii) between any two consecutive zeros of ϕ_n there is a zero of ϕ_{n-1} .