Numerical Analysis Qualifying Exam (May, 2011).

Answer any 8 questions.

- 1. Suppose A and B are square matrices such that AB is normal. Prove that $||AB||_2 \leq ||BA||$. (We use $|| \cdot ||_2$ to denote the spectral norm and $|| \cdot ||$ to denote any induced matrix norm.)
- 2. Let P and Q be Hermitian positive definite matrices. Prove that

$$x^*Px \leq x^*Qx$$
 for all $x \in \mathbb{C}^n$

if and only if

$$x^*Q^{-1}x \le x^*P^{-1}x$$
 for all $x \in \mathbb{C}^n$.

- 3. Suppose A is a Hermitian positive definite matrix split into $A = C + C^* + D$ where D is also Hermitian positive definite. Prove that $B = C + \omega^{-1}D$ is invertible whenever $0 < \omega < 2$. Consider the iteration $x_{n+1} = x_n + B^{-1}(b - Ax_n)$, with any initial iterate x_0 . Prove that x_n converges to $x = A^{-1}b$ whenever $0 < \omega < 2$.
- 4. Let the singular values of any matrix $M \in \mathbb{C}^{m \times n}$ be denoted by $\sigma_1(M) \ge \sigma_2(M) \ge \ldots \ge \sigma_q(M)$ with $q = \min(m, n)$. Prove that if A and B are two matrices in $\mathbb{C}^{m \times n}$, then

$$\sigma_{i+j-1}(A+B) \le \sigma_i(A) + \sigma_j(B)$$

for all $i, j = 1, 2, \ldots, q$ and $i + j \leq q$.

5. Let $A \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^N$. Consider the following iteration for solving Ax = b, that computes x_{n+1} , given $x_n \in \mathbb{R}^N$, as follows (in *m* intermediate steps): Setting $x_{n+1}^{(0)} = x_n$, for $\ell = 1, 2, \ldots, m$, compute $x_{n+1}^{(\ell)} = x_{n+1}^{(\ell-1)} + \tau_{\ell}(b - Ax_{n+1}^{(\ell-1)})$. Then, define $x_{n+1} = x_{n+1}^{(m)}$. There is a linear operator *E* such that $x_{n+1} - x = E(x_n - x)$. Give a formula for *E*. Suppose *A* is Hermitian and positive definite with spectral condition number κ . Prove that there are real values of the *m* parameters τ_{ℓ} such that

$$\rho(E) \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^m$$

- 6. Let $I_n(f) = \sum_{j=0}^n w_{j,n} f(x_{j,n})$ be a sequence of quadratures on [a, b] such that (i) $I_n(p) \to I(p)$ as $n \to +\infty$ for any polynomial p(x), and (ii) $B = \sup_n \sum_{j=0}^n |w_{j,n}| < +\infty$. Prove that $I_n(f) \to I(f)$ for all $f \in C[a, b]$. Here, the notation $I(f) = \int_a^b f(x) dx$ is used.
- 7. Design a stable quadratic algorithm for computing the positive root α of the equation $x^2 + 2px q = 0$ where p and q are arbitrary positive numbers. Prove that your algorithm is indeed stable and quadratic. Find an interval [a, b] such that any iterative sequence starting in [a, b] will converge to α .
- 8. State the Lagrange interpolation problem. Prove that the problem is well-posed, i.e. prove the existence and uniqueness of solutions. Derive the error formula for the interpolating polynomial.
- 9. Describe the Trapezoidal Rule for numerical integration. State and prove the error formula of the Trapezoidal Rule. Show that the error bound cannot be improved.
- 10. Let w(x) > 0 be integrable on [a, b]. Define an orthogonal polynomial family $\{\phi_n\}$ on [a, b] with weight w(x). Explain how $\{\phi_n\}$ can be constructed from $\{x^n\}$. Prove that $\phi_n(x)$ has n distinct roots in the interval (a, b).