Numerical Analysis Qualifying Exam (May 2010).

1. If P is a projector that is neither 0 nor the identity, prove that $\|P\|=\|I-P\|$ in any norm induced by a vector norm generated by an inner product.
2. Let $M=\left[\begin{array}{cc}A & B^{t} \\ B & C\end{array}\right]$ be a real symmetric and positive definite matrix with an invertible A. Prove that the Schur complement $S=C-B A^{-1} B^{t}$ is also symmetric and positive definite.
3. Suppose A is a Hermitian positive definite matrix split into $A=C+C^{*}+D$ where D is also Hermitian positive definite. Prove that $B=C+\omega^{-1} D$ is invertible whenever $0<\omega<2$. Consider the iteration $x_{n+1}=x_{n}+B^{-1}\left(b-A x_{n}\right)$, with any initial iterate x_{0}. Prove that x_{n} converges to $x=A^{-1} b$ whenever $0<\omega<2$.
4. If a square matrix A can be block partitioned as $A=\left[\begin{array}{cc}0 & M \\ N & 0\end{array}\right]$, prove that $\sigma(A)=\{z \in \mathbb{C}$: $\left.z^{2} \in \sigma(M N) \cup \sigma(N M)\right\}$.
5. Suppose A is a Hermitian positive definite matrix with eigenvalues

$$
0<\lambda_{0} \ll \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N} .
$$

Let $\kappa=\lambda_{N} / \lambda_{0}$ and $\kappa^{\prime}=\lambda_{N} / \lambda_{1}$. Let e_{n} denote the error in the nth step of the conjugate gradient algorithm applied to $A x=b$, and $\|y\|_{A}=\langle A y, y\rangle^{1 / 2}$. Prove that

$$
\left\|e_{n}\right\|_{A} \leq 2 \kappa\left(\frac{\sqrt{\kappa^{\prime}}-1}{\sqrt{\kappa^{\prime}}+1}\right)^{n-1}\left\|e_{0}\right\|_{A} .
$$

6. Let n be a positive integer, $h=1 / n$, and consider the grid of points $(i h, j h)$ for $i, j=$ $0,1, \ldots, n$. Let A be the finite difference operator with the " 5 -point stencil" discretizing the Laplace operator $-\Delta$, with zero Dirichlet boundary conditions on this grid. Describe it. What are the eigenvalues of A ? Prove that the spectral condition number of A is $\kappa(A)=\cot ^{2}(\pi h / 2)$.
7. Let $x_{0}, x_{1}, \cdots, x_{n}$ be distinct points in a finite interval $[a, b]$ and $f \in C^{1}[a, b]$. Show that for any given $\varepsilon>0$ there exists a polynomial p such that $\|f-p\|_{\infty}<\varepsilon$ and $p\left(x_{i}\right)=f\left(x_{i}\right)$ for all $i=0,1, \cdots, n$ (where $\|\cdot\|_{\infty}$ denotes the $L^{\infty}(a, b)$-norm).
8. Let $w(x)$ be a positive integrable function on $[a, b]$. Consider the quadrature

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{k=0}^{n}\left(A_{k} f\left(x_{k}\right)+B_{k} f^{\prime}\left(x_{k}\right)+C_{k} f^{\prime \prime}\left(x_{k}\right)\right)
$$

for any f with continuous first and second derivatives (f^{\prime} and $f^{\prime \prime}$, respectively). Give conditions on A_{k}, B_{k}, C_{k} and x_{k} so that the quadrature has precision $4 n+3$.
9. Given that the Newton iteration for finding a root r of f converges, $f \in C^{2}(\mathbb{R})$, and $f(r)=$ $f^{\prime}(r)=0 \neq f^{\prime \prime}(r)$, prove that the convergence cannot be quadratic. Suggest a modification that restores quadratic convergence for smooth f.
10. Let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct numbers and for each i, let ℓ_{i} denote the product of all $\left(x_{i}-x_{j}\right)^{-1}$ for all $j \neq i, j=0, \ldots, n$. Express the number $q_{f}=f\left(x_{0}\right) \ell_{0}+f\left(x_{1}\right) \ell_{1}+\cdots+f\left(x_{n}\right) \ell_{n}$ as a divided difference of f. Then show that $q_{f}=0$ whenever f is a polynomial of degree $n-1$.

