Numerical Analysis Qualifying Exam (Spring 2010).

1. Prove that a projector is normal if and only if it is self-adjoint.
2. Let $A \in \mathbb{R}^{N \times N}$ and $b \in \mathbb{R}^{N}$. Consider the following iteration for solving $A x=b$, that computes x_{n+1}, given $x_{n} \in \mathbb{R}^{N}$, as follows (in m intermediate steps): Setting $x_{n+1}^{(0)}=x_{n}$, for $\ell=1,2, \ldots, m$, compute $x_{n+1}^{(\ell)}=x_{n+1}^{(\ell-1)}+\tau_{\ell}\left(b-A x_{n+1}^{(\ell-1)}\right)$. Then, define $x_{n+1}=x_{n+1}^{(m)}$. There is a linear operator E such that $x_{n+1}-x=E\left(x_{n}-x\right)$. Give a formula for E. Suppose A is Hermitian and positive definite with spectral condition number κ. Prove that there are real values of the m parameters τ_{ℓ} such that

$$
\rho(E) \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{m} .
$$

3. Suppose A and B are square matrices such that $A B$ is normal. Prove that $\|A B\|_{2} \leq\|B A\|$. (We use $\|\cdot\|_{2}$ to denote the spectral norm and $\|\cdot\|$ to denote any induced matrix norm.)
4. Let $A \in \mathbb{C}^{m \times m}$, and a_{j} be its j-th column. Prove that $|\operatorname{det} A| \leq \prod_{j=1}^{m}\left\|a_{j}\right\|_{2}$.
5. Suppose A is a Hermitian positive definite matrix split into $A=C+C^{*}+D$ where D is also Hermitian positive definite. Show that $B=C+\omega^{-1} D$ is invertible. Consider the iteration $x_{n+1}=x_{n}+B^{-1}\left(b-A x_{n}\right)$, with any initial iterate x_{0}. Prove that x_{n} converges to $x=A^{-1} b$ whenever $0<\omega<2$.
6. Let $x_{0}, x_{1}, \cdots, x_{n}$ be distinct points in a finite interval $[a, b]$ and $f \in C^{1}[a, b]$. Show that for any given $\varepsilon>0$ there exists a polynomial p such that $\|f-p\|_{\infty}<\varepsilon$ and $p\left(x_{i}\right)=f\left(x_{i}\right)$ for all $i=0,1, \cdots, n$ (where $\|\cdot\|_{\infty}$ denotes the $L^{\infty}(a, b)$-norm).
7. Let $p>0$ and $x=\sqrt{p+\sqrt{p+\sqrt{p+\cdots \cdot}}}$, where all the square roots are positive. Design a fixed point iteration $x_{n+1}=F\left(x_{n}\right)$ that converges to x. You should write down a specific F. Obtain a sufficient condition on the initial iterates for (global) convergence of the iteration.
8. Let n be a positive integer, $h=1 / n$, and consider the grid of points $(i h, j h)$ for $i, j=$ $0,1, \ldots, n$. Let A be the finite difference operator with the " 5 -point stencil" discretizing the Laplace operator $-\Delta$, with zero Dirichlet boundary conditions on this grid. Describe it. Prove that the spectrum of A consists of the numbers

$$
\lambda_{l m}=4 h^{-2}\left(\sin ^{2}(l \pi h / 2)+\sin ^{2}(m \pi h / 2)\right),
$$

for all $l, m=1, \ldots, n-1$.
9. Let x_{m} and x_{m+1} be two successive (complex) iterates when Newton's method is applied to a polynomial $p(z)$ of degree n. Prove that there is a zero of $p(z)$ in the disk $\left\{z \in \mathbb{C}:\left|z-x_{m}\right| \leq\right.$ $\left.n\left|x_{m+1}-x_{m}\right|\right\}$.
10. Let $w(x)$ be a positive integrable function on $[a, b]$. Consider the quadrature

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{k=0}^{n}\left(A_{k} f\left(x_{k}\right)+B_{k} f^{\prime}\left(x_{k}\right)+C_{k} f^{\prime \prime}\left(x_{k}\right)\right)
$$

for any f with continuous first and second derivatives (f^{\prime} and $f^{\prime \prime}$, respectively). Give conditions on A_{k}, B_{k}, C_{k} and x_{k} so that the quadrature has precision $4 n+3$.

