Numerical Analysis Qualifying Exam (September, 2009). Answer any 8 questions.
1a. Suppose u and $v \in \mathbb{C}^{n}$. Derive a formula for the p-norm of $u v^{*}, p \geq 1$.
1b. Let $A=U \Sigma V^{*}$ be the singular value decomposition of A, where the diagonal elements of Σ are in decreasing order:

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots
$$

Show that $\|A\|_{2}=\sigma_{1}$ and

$$
\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}+\ldots}
$$

2. If $A=Q R$ is the $Q R$ factorization of A, show that $r_{i i}$ is the distance from the i-th column of A to the space spanned by the first $i-1$ columns of A.
3. Let $\|\cdot\|_{p}$ for $1 \leq p \leq \infty$ denote the norm on $m \times n$ matrices induced by the ℓ^{p}-norm. For any positive p and q with $p^{-1}+q^{-1}=1$, show that

$$
\|A\|_{2}^{2} \leq\|A\|_{p}\|A\|_{q}, \quad \text { for all } A \in \mathbb{C}^{m \times n}
$$

Hint: Recall that for a Hermitian matrix $H,\|H\|_{2}$ is the absolute largest eigenvalue. As a result $\|H\|_{2} \leq\|H\|$ for any matrix norm induced by a vector norm.
4. Prove Gerschgorin's theorem: If $A \in \mathbb{C}^{n \times n}$, then each eigenvalue of A lies in the union of the disks

$$
D_{i}=\left\{\lambda \in \mathbb{C}:\left|\lambda-a_{i i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\right\} .
$$

Moreover, if m disks form a connected domain that is disjoint from the other $n-m$ disks, then there are precisely m eigenvalues of A within this domain.
5. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $\|P-Q\|_{2} \leq 1$.
6. Assume that $g(x)$ is continuously differentiable on $[a, b]$, that $g([a, b]) \in[a, b]$, and that

$$
\lambda=\operatorname{Max}_{a \leq x \leq b}\left|g^{\prime}(x)\right|<1 .
$$

Prove that the following are true:
(i) $x=g(x)$ has a unique solution α in $[a, b]$.
(ii) For any initial choice x_{0} in $[a, b]$, the iteration $x_{n+1}=g\left(x_{n}\right)$ has the property that $\lim _{n \rightarrow \infty} x_{n}=\alpha$.
(iii)

$$
\lim _{n \rightarrow \infty} \frac{\alpha-x_{n+1}}{\alpha-x_{n}}=g^{\prime}(\alpha) .
$$

7. Assume that $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ are continuous in $[a, b]$, and that for some $\alpha \in(a, b)$, we have $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$. Show that if x_{0} is chosen close enough to α, the iterates

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

converge to α. Moreover

$$
\lim _{n \rightarrow \infty} \frac{\alpha-x_{n+1}}{\left(\alpha-x_{n+1}\right)^{2}}=-\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}
$$

8. Let $x_{0}, x_{1}, x_{2} \ldots x_{n}$ be distinct real numbers and let f be a given real-valued function with $n+1$ continuous derivatives. Let I be an interval containing all of the x_{k}, and t. Show that there is a $\xi \in I$ such that

$$
f(t)-\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(t)=\frac{\left(t-x_{0}\right)\left(t-x_{1}\right) \ldots\left(t-x_{n}\right)}{(n+1)!} f^{(n+1)}(\xi)
$$

where l_{k} is the Lagrange interpolating polynomial which is 1 at x_{k} and 0 at the other x_{j}, $j \neq k$.
9. Let $I_{n}(f)=\sum_{j=0}^{n} w_{j, n} f\left(x_{j, n}\right)$ be a sequence of approximations to $I(f)=\int_{a}^{b} f(x) d x$. Let F be a family of functions which is dense in $C[a, b]$, and suppose that (a) $I_{n}(f) \rightarrow I(f)$ for all $f \in F$, and (b) $B=\sup _{n} \sum_{j=0}^{n}\left|w_{j, n}\right|<\infty$. Show that $I_{n}(f) \rightarrow I(f)$ for all $f \in C[a, b]$.
10. Consider the differential equation $y^{\prime}=f(t, y), y(0)=y_{0}$, where $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$ for all y_{1} and $y_{2} \in \mathbb{R}$. Show that a multistep method

$$
y_{n+1}=\sum_{j=0}^{p} a_{j} y_{n-j}+h \sum_{j=-1}^{p} b_{j} f\left(x_{n-j}, y_{n-j}\right)
$$

has global error $\tau(h)=O\left(h^{m}\right)$ for all $y(x)$ which are (m+1) times continuously differentiable if and only if

$$
\sum_{j=0}^{p} a_{j}=1,
$$

and

$$
\sum_{j=0}^{p}(-j)^{i} a_{j}+i \sum_{j=-1}^{p}(-j)^{i-1} b_{j}=1
$$

for $i=1,2,3, \ldots, m$.

