Numerical Analysis Qualifying Exam (September, 2009). Answer any 8 questions.

- 1a. Suppose u and $v \in \mathbb{C}^n$. Derive a formula for the *p*-norm of uv^* , $p \ge 1$.
- 1b. Let $A = U\Sigma V^*$ be the singular value decomposition of A, where the diagonal elements of Σ are in decreasing order:

$$\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots$$

Show that $||A||_2 = \sigma_1$ and

$$||A||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3 + \dots}$$

- 2. If A = QR is the QR factorization of A, show that r_{ii} is the distance from the *i*-th column of A to the space spanned by the first i 1 columns of A.
- 3. Let $\|\cdot\|_p$ for $1 \le p \le \infty$ denote the norm on $m \times n$ matrices induced by the ℓ^p -norm. For any positive p and q with $p^{-1} + q^{-1} = 1$, show that

$$||A||_2^2 \leq ||A||_p ||A||_q$$
, for all $A \in \mathbb{C}^{m \times n}$.

Hint: Recall that for a Hermitian matrix H, $||H||_2$ is the absolute largest eigenvalue. As a result $||H||_2 \le ||H||$ for any matrix norm induced by a vector norm.

4. Prove Gerschgorin's theorem: If $A \in \mathbb{C}^{n \times n}$, then each eigenvalue of A lies in the union of the disks

$$D_i = \{\lambda \in \mathbb{C} : |\lambda - a_{ii}| \le \sum_{j \ne i} |a_{ij}|\}.$$

Moreover, if m disks form a connected domain that is disjoint from the other n - m disks, then there are precisely m eigenvalues of A within this domain.

- 5. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $||P Q||_2 \leq 1$.
- 6. Assume that g(x) is continuously differentiable on [a, b], that $g([a, b]) \in [a, b]$, and that

$$\lambda = Max_{a < x < b}|g'(x)| < 1.$$

Prove that the following are true:

(i) x = g(x) has a unique solution α in [a, b].

(ii) For any initial choice x_0 in [a, b], the iteration $x_{n+1} = g(x_n)$ has the property that $\lim_{n \to \infty} x_n = \alpha$.

(iii)

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = g'(\alpha).$$

7. Assume that f(x), f'(x), and f''(x) are continuous in [a, b], and that for some $\alpha \in (a, b)$, we have $f(\alpha) = 0$ and $f'(\alpha) \neq 0$. Show that if x_0 is chosen close enough to α , the iterates

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

converge to α . Moreover

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_{n+1})^2} = -\frac{f''(\alpha)}{2f'(\alpha)}.$$

8. Let $x_0, x_1, x_2, ..., x_n$ be distinct real numbers and let f be a given real-valued function with n + 1 continuous derivatives. Let I be an interval containing all of the x_k , and t. Show that there is a $\xi \in I$ such that

$$f(t) - \sum_{k=0}^{n} f(x_k) l_k(t) = \frac{(t-x_0)(t-x_1)\dots(t-x_n)}{(n+1)!} f^{(n+1)}(\xi)$$

where l_k is the Lagrange interpolating polynomial which is 1 at x_k and 0 at the other x_j , $j \neq k$.

- 9. Let $I_n(f) = \sum_{j=0}^n w_{j,n} f(x_{j,n})$ be a sequence of approximations to $I(f) = \int_a^b f(x) dx$. Let F be a family of functions which is dense in C[a, b], and suppose that (a) $I_n(f) \to I(f)$ for all $f \in F$, and (b) $B = \sup_n \sum_{j=0}^n |w_{j,n}| < \infty$. Show that $I_n(f) \to I(f)$ for all $f \in C[a, b]$.
- 10. Consider the differential equation $y' = f(t, y), y(0) = y_0$, where $|f(t, y_1) f(t, y_2)| \le K|y_1 y_2|$ for all y_1 and $y_2 \in \mathbb{R}$. Show that a multistep method

$$y_{n+1} = \sum_{j=0}^{p} a_j y_{n-j} + h \sum_{j=-1}^{p} b_j f(x_{n-j}, y_{n-j})$$

has global error $\tau(h) = O(h^m)$ for all y(x) which are (m+1) times continuously differentiable if and only if

$$\sum_{j=0}^{p} a_j = 1,$$

and

$$\sum_{j=0}^{p} (-j)^{i} a_{j} + i \sum_{j=-1}^{p} (-j)^{i-1} b_{j} = 1$$

for i = 1, 2, 3, ..., m.