Numerical Analysis Qualifying Exam (January, 2009).

- 1. Let $M = \begin{bmatrix} A & B^t \\ B & C \end{bmatrix}$ be real symmetric and positive definite matrix. Let $S = C BA^{-1}B^t$ be the Schur complement. Prove that S is symmetric and positive definite.
- 2. Let $\|\cdot\|_p$ for $1 \leq p \leq \infty$ denote the norm on $m \times n$ matrices induced by the ℓ^p -norm on vectors in \mathbb{C}^m and \mathbb{C}^n . Prove that

$$||A||_2 \le ||A||_1 ||A||_{\infty}, \quad \text{for all } A \in \mathbb{C}^{m \times n}.$$

- 3. Show that if P and Q be Hermitian positive definite matrices satisfying $x^*Px \leq x^*Qx$, for all $x \in \mathbb{C}^n$, then $\|P\|_F \leq \|Q\|_F$.
- 4. Let T be any square matrix and let $\|\cdot\|$ denote any induced norm. Prove that $\lim_{n\to\infty} \|T^n\|^{1/n}$ exists and equals $\inf_{n=1,2,\dots} \|T^n\|^{1/n}$.
- 5. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $||P Q||_2 \leq 1$.
- 6. Let x_0, x_1, \dots, x_n be distinct points in a finite interval [a, b] and $f \in C^1[a, b]$. Show that for any given $\varepsilon > 0$ there exists a polynomial p such that $||f - p||_{\infty} < \varepsilon$ and $p(x_i) = f(x_i)$ for all $i = 0, 1, \dots, n$ (where $|| \cdot ||_{\infty}$ denotes the $L^{\infty}(a, b)$ -norm).
- 7. Let $\hat{f}(s)$ be the continuous Fourier transform of $f(t) \in L^2[-\infty,\infty]$. Suppose further that $\hat{f}(s) = 0$ for $|s| > \pi$. Derive the interpolation formula

$$f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin(\pi(t-k))}{\pi(t-k)}.$$

- 8. Let $L_n(f)$ be the Lagrange polynomial interpolating a function f at nodes $a = x_0 < x_1 \dots < x_n = b$. (a) Give the formula for $L_n(f)$. (b) Prove that there is a unique polynomial of degree at most n interpolating f at the nodes. (c) State and prove the formula for the error $f(x) L_n(f)(x)$ when $f(x) \in C^{n+1}[a, b]$,
- 9. Assume that g is continuously differentiable real-valued function and $a \leq g(x) \leq b$ on [a, b]. Show the following:
 - (a) There is an $\alpha \in [a, b]$ such that $g(\alpha) = \alpha$
 - (b) If |g'(x)| < 1 on [a, b], then there is only one fixed point on the interval [a, b].
 - (c) If we generate iterates using the recurrence $x_{n+1} = g(x_n)$ starting from some $x_0 \in [a, b]$, then we have

$$|\alpha - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|$$
 where $\lambda = \max_{x \in [a,b]} |g'(x)|.$

10. Let $\{\phi_n(x) : n \ge 0\}$ be an orthogogonal family of polynomials on the interval (a, b) with weight function $w(x) \ge 0$ for all $x \in [a, b]$. Show that the polynomial $\phi_n(x)$ has exactly n distinct real roots in the open interval (a, b).