Numerical Analysis Qualifying Exam (January, 2009).

1. Let $M=\left[\begin{array}{cc}A & B^{t} \\ B & C\end{array}\right]$ be real symmetric and positive definite matrix. Let $S=C-B A^{-1} B^{t}$ be the Schur complement. Prove that S is symmetric and positive definite.
2. Let $\|\cdot\|_{p}$ for $1 \leq p \leq \infty$ denote the norm on $m \times n$ matrices induced by the ℓ^{p}-norm on vectors in \mathbb{C}^{m} and \mathbb{C}^{n}. Prove that

$$
\|A\|_{2} \leq\|A\|_{1}\|A\|_{\infty}, \quad \text { for all } A \in \mathbb{C}^{m \times n}
$$

3. Show that if P and Q be Hermitian positive definite matrices satisfying $x^{*} P x \leq x^{*} Q x$, for all $x \in \mathbb{C}^{n}$, then $\|P\|_{F} \leq\|Q\|_{F}$.
4. Let T be any square matrix and let $\|\cdot\|$ denote any induced norm. Prove that $\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}$ exists and equals $\inf _{n=1,2, \ldots .}\left\|T^{n}\right\|^{1 / n}$.
5. Let P and Q be two $m \times m$ orthogonal projectors. Prove that $\|P-Q\|_{2} \leq 1$.
6. Let $x_{0}, x_{1}, \cdots, x_{n}$ be distinct points in a finite interval $[a, b]$ and $f \in C^{1}[a, b]$. Show that for any given $\varepsilon>0$ there exists a polynomial p such that $\|f-p\|_{\infty}<\varepsilon$ and $p\left(x_{i}\right)=f\left(x_{i}\right)$ for all $i=0,1, \cdots, n$ (where $\|\cdot\|_{\infty}$ denotes the $L^{\infty}(a, b)$-norm).
7. Let $\hat{f}(s)$ be the continuous Fourier transform of $f(t) \in L^{2}[-\infty, \infty]$. Suppose further that $\hat{f}(s)=0$ for $|s|>\pi$. Derive the interpolation formula

$$
f(t)=\sum_{k=-\infty}^{\infty} f(k) \frac{\sin (\pi(t-k))}{\pi(t-k)}
$$

8. Let $L_{n}(f)$ be the Lagrange polynomial interpolating a function f at nodes $a=x_{0}<x_{1} \ldots \ldots<$ $x_{n}=b$. (a) Give the formula for $L_{n}(f)$. (b) Prove that there is a unique polynomial of degree at most n interpolating f at the nodes. (c) State and prove the formula for the error $f(x)-L_{n}(f)(x)$ when $f(x) \in C^{n+1}[a, b]$,
9. Assume that g is continuously differentiable real-valued function and $a \leq g(x) \leq b$ on $[a, b]$. Show the following:
(a) There is an $\alpha \in[a, b]$ such that $g(\alpha)=\alpha$
(b) If $\left|g^{\prime}(x)\right|<1$ on $[a, b]$, then there is only one fixed point on the interval $[a, b]$.
(c) If we generate iterates using the recurrence $x_{n+1}=g\left(x_{n}\right)$ starting from some $x_{0} \in[a, b]$, then we have

$$
\left|\alpha-x_{n}\right| \leq \frac{\lambda^{n}}{1-\lambda}\left|x_{1}-x_{0}\right| \quad \text { where } \quad \lambda=\max _{x \in[a, b]}\left|g^{\prime}(x)\right| .
$$

10. Let $\left\{\phi_{n}(x): n \geq 0\right\}$ be an orthogogonal family of polynomials on the interval (a, b) with weight function $w(x) \geq 0$ for all $x \in[a, b]$. Show that the polynomial $\phi_{n}(x)$ has exactly n distinct real roots in the open interval (a, b).
