Numerical Analysis Qualifying Exam (September, 2008).

- 1. Let $M = \begin{bmatrix} A & B^t \\ B & C \end{bmatrix}$ be real symmetric and positive definite matrix. Let $S = C BA^{-1}B^t$ be the Schur complement. Prove that S is symmetric and positive definite.
- Suppose Q and R are the Householder QR factors of a well conditioned square nonsingular matrix A = QR, computed in a floating point number system of machine precision ε_{mac}.
 (a) State an algorithm in which you use Q and R to compute an approximation x to the solution x of Ax = b. (b) Let || · || denote any vector norm as well the matrix norm induced by it. Out of the following three statements A-C, pick one that is true, and prove it. (You may use the backward stability results that you know of without proof.)

A:
$$\|\widetilde{Q} - Q\| = O(\varepsilon_{\max}).$$
 B: $\frac{\|\widetilde{R} - R\|}{\|R\|} = O(\varepsilon_{\max}).$ C: $\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\varepsilon_{\max})$

- 3. Show that if P and Q be Hermitian positive definite matrices satisfying $x^*Px \leq x^*Qx$, for all $x \in \mathbb{C}^n$, then $\|P\|_F \leq \|Q\|_F$.
- 4. Describe the finite element method for solving -Δu = f on Ω = (0,1) × (0,1) with zero Dirichlet boundary conditions on the boundary ∂Ω. Consider a subdivision of Ω by right triangles whose orthogonal edges are of length h. Prove that there is a C > 0 independent of h such that the spectral condition number of the stiffness matrix A satisfies κ(A) ≤ Ch⁻². (If you cannot prove this with the stated assumptions, you may try after placing further assumptions on the mesh.)
- 5. State the (unshifted) QR iteration for eigenvalues. Show that if one iterate of the QR iteration is symmetric and tridiagonal, then the next one is also symmetric and tridiagonal.
- 6. Let x_0, x_1, \dots, x_n be distinct points in a finite interval [a, b] and $f \in C^1[a, b]$. Show that for any given $\varepsilon > 0$ there exists a polynomial p such that $||f - p||_{\infty} < \varepsilon$ and $p(x_i) = f(x_i)$ for all $i = 0, 1, \dots, n$ (where $|| \cdot ||_{\infty}$ denotes the $L^{\infty}(a, b)$ -norm).
- 7. Let $\hat{f}(s)$ be the continuous Fourier transform of $f(t) \in L^2[-\infty,\infty]$. Suppose further that $\hat{f}(s) = 0$ for $|s| > \pi$. Derive the interpolation formula

$$f(t) = \sum_{k=-\infty}^{\infty} f(k) \frac{\sin(\pi(t-k))}{\pi(t-k)}.$$

- 8. Let $L_n(f)$ be the Lagrange polynomial interpolating a function f at nodes $a = x_0 < x_1 \dots < x_n = b$. (a) Give the formula for $L_n(f)$. (b) Prove that there is a unique polynomial interpolating f at the nodes. (c) State and prove the formula for the error $f(x) L_n(f)(x)$ when $f(x) \in C^{n+1}[a, b]$,
- 9. Let S_n(f) be the Simpson's rule approximation to ∫^{x₂}_{x₀} f(x)dx, with three nodes x₀ < x₂ and x₁ = .5(x₀ + x₂). (a) State Simpson's rule and prove that it is exact for cubic polynomials. (b) Derive a formula for the error in Simpson's rule by exploiting the formula for the error in Lagrange interpolation.
- 10. Let p > 0 and $x = \sqrt{p + \sqrt{p + \sqrt{p + \cdots}}}$, where all the square roots are positive. Design a fixed point iteration $x_{n+1} = F(x_n)$ with some F which has x as a fixed point. Prove that the fixed point iteration converges for all choices of initial guesses greater than -p + 1/4.