MAD6407

University of Florida

EXAM

January 6, 2017

Name: ID #: Instructor: Maia Martcheva

Directions: You have 2 hours to answer the following questions. You must show all your work as neatly and clearly as possible and indicate the final answer clearly. You may not use a calculator.

Problem	Possible	Points
1	25	
2	15	
3	20	
4	20	
5	20	
Total	100	

(1) (25 points)

(a) Show that the equation $x = \frac{1}{2}\cos(x)$ has a solution α .

(b) Find an interval [a, b] containing α and such that for every $x_0 \in [a, b]$, the iterative sequence

$$(1) x_{n+1} = \frac{1}{2}\cos x_n$$

will converge to α . Justify your answer.

(2) (15 points) For the basic Lagrange polynomials

$$L_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j} \quad \text{for} \quad i = 0, \dots, n,$$
$$\sum_i L_i(x) = 1 \quad \text{for all} \quad x.$$

show that

(3) (20 points) Consider a quadrature rule of the form for $0 < \alpha < 1$:

$$\int_0^1 x^\alpha f(x) \, dx \approx A \int_0^1 f(x) dx + B \int_0^1 x f(x) dx.$$

(a) Determine the constants A, B so that the quadrature formula has maximum degree of exactness.

(b) What is the degree of exactness of the formula in part (a)?

(4) (20 points) Let f be an arbitrary (continuous) function on [0, 1] satisfying $f(x) + f(1-x) \equiv 1$ for $0 \le x \le 1$. (a) Show that $\int_0^1 f(x) dx = \frac{1}{2}$.

(b) Show that the composite trapezoidal rule for computing $\int_0^1 f(x) dx$ is exact.

(5) (20 points) Assume that you are solving the initial value problem.

$$y' = f(t, y) \qquad a \le t \le b$$

$$y(a) = \alpha$$

The formula for the global error of the numerical solutions for the ODE problem above obtained via Euler's method is $(M = ||Y''||_{\infty})$:

$$|Y(t_i) - w_i| < \frac{hM}{2L} [e^{L(b-a)} - 1].$$

Compute the values of L and $M=||Y''||_\infty$ necessary to apply the global error formula above to the specific ODE problem

$$y' = \sin(t + 2y) + e^t \qquad 0 \le t \le 1$$

$$y(0) = 0$$