University of Florida

MAD6407
EXAM
Jandary 6, 2017

Name:
ID \#:
Instructor: Maia Martcheva

Directions: You have 2 hours to answer the following questions. You must show all your work as neatly and clearly as possible and indicate the final answer clearly. You may not use a calculator.

Problem	Possible	Points
1	25	
2	15	
3	20	
4	20	
5	20	
Total	100	

(1) (25 points)
(a) Show that the equation $x=\frac{1}{2} \cos (x)$ has a solution α.
(b) Find an interval $[a, b]$ containing α and such that for every $x_{0} \in[a, b]$, the iterative sequence
(1)

$$
x_{n+1}=\frac{1}{2} \cos x_{n}
$$

will converge to α. Justify your answer.
(2) (15 points) For the basic Lagrange polynomials

$$
L_{i}(x)=\Pi_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} \quad \text { for } \quad i=0, \ldots, n,
$$

show that

$$
\sum_{i} L_{i}(x)=1 \quad \text { for } \quad \text { all } \quad x
$$

(3) (20 points) Consider a quadrature rule of the form for $0<\alpha<1$:

$$
\int_{0}^{1} x^{\alpha} f(x) d x \approx A \int_{0}^{1} f(x) d x+B \int_{0}^{1} x f(x) d x
$$

(a) Determine the constants A, B so that the quadrature formula has maximum degree of exactness.
(b) What is the degree of exactness of the formula in part (a)?
(4) (20 points) Let f be an arbitrary (continuous) function on [0, 1] satisfying

$$
f(x)+f(1-x) \equiv 1 \quad \text { for } \quad 0 \leq x \leq 1
$$

(a) Show that $\int_{0}^{1} f(x) d x=\frac{1}{2}$.
(b) Show that the composite trapezoidal rule for computing $\int_{0}^{1} f(x) d x$ is exact.
(5) (20 points) Assume that you are solving the initial value problem.

$$
\begin{aligned}
& y^{\prime}=f(t, y) \quad a \leq t \leq b \\
& y(a)=\alpha
\end{aligned}
$$

The formula for the global error of the numerical solutions for the ODE problem above obtained via Euler's method is $\left(M=\left\|Y^{\prime \prime}\right\|_{\infty}\right)$:

$$
\left|Y\left(t_{i}\right)-w_{i}\right|<\frac{h M}{2 L}\left[e^{L(b-a)}-1\right] .
$$

Compute the values of L and $M=\left\|Y^{\prime \prime}\right\|_{\infty}$ necessary to apply the global error formula above to the specific ODE problem

$$
\begin{aligned}
& y^{\prime}=\sin (t+2 y)+e^{t} \quad 0 \leq t \leq 1 \\
& y(0)=0
\end{aligned}
$$

