University of Florida

MAD6407
EXAM
August 18, 2016

> Name:
> ID \#:
> Instructor: Maia Martcheva

Directions: You have 2 hours to answer the following questions. You must show all your work as neatly and clearly as possible and indicate the final answer clearly. You may not use a calculator.

Problem	Possible	Points
1	25	
2	20	
3	15	
4	20	
5	20	
Total	100	

(1) (25 points) The iteration

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)-\frac{1}{2} f^{\prime \prime}\left(x_{n}\right) \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}}
$$

for solving the equation $f(x)=0$ is known as Halley's method.
(a) Show that the method can, alternatively, be interpreted as applying Newton's method to the equation $g(x)=0$, with $g(x)=f(x) / \sqrt{f^{\prime}(x)}$.
(b) Assuming α is a simple root of the equation, and $x_{n} \rightarrow \alpha$ as $n \rightarrow \infty$, show that convergence is at least cubic.
Hint: Part (a) might help.
(2) (20 points) Do the following parts which are unrelated.
(a) Derive a Taylor method of order two for the first order initial value problem (IVP)
(1)

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{y^{2}}{1+t} \\
y(1)=-\frac{1}{\ln 2}
\end{array}\right.
$$

(b) Derive a numerical method for the following second order IVP by replacing the derivatives with centered differences over the mesh $t_{n+1}=t_{n}+h$ where $h=1 / N$.
(2)

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}+y=\cos t \quad 0 \leq t \leq 1 \\
y(0)=1 \\
y^{\prime}(0)=0
\end{array}\right.
$$

(3) (15 points) Consider a quadrature rule of the form

$$
\int_{0}^{1} f(x) d x \approx A f(0)+B f^{\prime}(0)+C f(\gamma)+D f(1)
$$

(a) Determine the constants A, B, C, D, and γ so that the quadrature formula has maximum degree of exactness.
(b) What is the degree of exactness of the formula is part (a)?
(4) (20 points) For the function $f(x)=\ln (x)$ for $x \in[1,2]$, find the minimax approximation polynomial of degree one. Give the exact value of the minimax error.
(5) (20 points) This problem has the following parts.
(a) Relative to the L^{2} norm on the interval $[1,3]$, find the least squares approximation to the function $f(x)=1 / x$ using polynomials of degree at most one.
(b) Find the least squares error of the approximation above.

