Logic Qualifing Exam May 2013

Answer six questions and at least one from each section.

Section 1

1. Show that the theory of the class of infinite sets is complete and decidable, but is not finitely axiomatizable.

2. State and sketch a proof of the Los theorem about ultraproducts of models

3. Show that for any elementary chain $\{\mathcal{A}_i\}_{i\in\omega}$ of structures, \mathcal{A}_i is an elementary submodel of the union \mathcal{A} .

Section 2

4. State and prove the Schroder-Bernstein Theorem

5. Show that Zorn's Lemma implies the Well-Ordering Principle.

6. Show that for any notion of forcing \mathcal{P} and any countable set \mathcal{D} of \mathcal{P} -dense sets, there exists a \mathcal{D} -generic \mathcal{P} -filter.

Section 3

7. Prove that if $X \subseteq \omega$ has an infinite computably enumerable subset A, then it has an infinite computable subset B.

8. Sketch the proof that there are \leq_m -incomparable c. e. sets.

9. Explain why the set WF of well-founded trees in ω^* and the set WO of well-orderings of ω are Π_1^1 complete and prove the Boundedness Principle, that any Σ_1^1 subset of WO is bounded below ω_1 .