Logic Qualifyng Exam January 2009

Answer six questions and at least one from each section.

Section 1

1. Sketch the proof of Godel's Completeness Theorem for Predicate Logic and explain the use of Henkin constants (or Skolem functions).

2. Show that for any elementary chain $\{A_i\}_{i\in\omega}$ of structures, A_i is an elementary submodel of the union A

3. Show that the theory of dense linear orderings without end points is complete and decidable.

Section 2

4. Suppose $2 \leq \kappa \leq \lambda$ and λ is infinite. Show that $2^{\lambda} = \kappa^{\lambda}$.

5. State and prove Konig's Lemma. (Hint: trees.)

6. Show that for any notion of forcing \mathcal{P} and any countable set \mathcal{D} of \mathcal{P} -dense sets, there exists a \mathcal{D} -generic \mathcal{P} -filter.

Section 3

7. Sketch a proof of Godel's incompleteness Theorem for Arithmetic.

8.Define many-one and truth-table reducibility and show that one immplies the other but the converse does not hold in general.

9. State the Friedburg-Muchnik Theorem and sketch the proof. Explain how the "priority" argument deals with "injury".