PhD Functional Analysis Examination September 2011

Do any SIX problems. Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

- 1. Let X be a vector space and \mathcal{F} a vector space of linear functionals on X that separates points.
 - a) Write down a base for the weak topology on X induced by \mathcal{F} .
 - b) Prove that if a linear functional φ on X is continuous in this topology, then $\varphi \in \mathcal{F}$.
- 2. Let X be a normed vector space. Suppose (x_n) is a sequence in X, converging weakly to $x \in X$. (That is, $\varphi(x_n) \to \varphi(x)$ for every norm-continuous linear functional φ .) Prove that there is a sequence y_n , where each y_n is a convex combination of finitely many of the x_n , such that $\lim ||y_n - x|| = 0$.
- 3. Let T be a bounded linear operator on a Hilbert space H. Prove that if both T and T^* are bounded below, then T is invertible. (Recall that T bounded below means that there is a constant c > 0 so that $||Tx|| \ge c||x||$ for all $x \in H$.)
- 4. Let T be a bounded linear operator on Hilbert space. Prove that there is a positive operator P and a partial isometry U such that $\ker U = \ker T$ and T = UP (that is, T has a polar decomposition).
- 5. Let T be a Hilbert space operator with $||T|| \leq 1$.
 - a) Prove that $I T^*T$ and $I TT^*$ are positive operators.
 - b) Prove that

$$T(I - T^*T)^{1/2} = (I - TT^*)^{1/2}T.$$

(Hint: approximate $\sqrt{1-x}$ by polynomials $p_n(x)$ and use the spectral theorem.)

6. Let (λ_n) be a bounded sequence of complex numbers. Consider the weighted shift operator S defined on $\ell^2(\mathbb{N})$ by

$$S(x_0, x_1, x_2, \dots) = (0, \lambda_0 x_0, \lambda_1 x_1, \lambda_2 x_2, \dots).$$

Characterize those sequences (λ_n) for which S is compact.

- 7. Let A be a Banach algebra (over \mathbb{C}) and $a \in A$.
 - a) Define the *spectrum* of a.
 - b) Show that if $\lambda \in \mathbb{C}$ and $|\lambda| > ||a||$, then λ does not lie in the spectrum of a.