Instructions: Do all problems, each on a separate page.

Notation:

- The statement that (X, \mathcal{B}, μ, f) is a $m p t$ (measure preserving transformation) means that X is a set with the probability measure μ defined on the σ-algebra \mathcal{B} and f is a bijective, bi-measurable map $f: X \rightarrow X$ which preserves the measure μ.
- The statement that $(X, d, \mathcal{B}, \mu, f)$ is a $m p h$ (measure preserving homeomorphism) means that (X, \mathcal{B}, μ, f) is a mpt and in addition, (X, d) is a compact metric space, f is a homeomorphism, and \mathcal{B} is the Borel σ-algebra.

1. Let (X, d) be a compact metric space and $f: X \rightarrow X$ a homeomorphism.
(a) Define the recurrent set $\Lambda(f)$ and the nonwandering set $\Omega(f)$ and show they are both compact, invariant sets.
(b) Show that $\Lambda(f) \subset \Omega(f)$ and give an example where the inclusion is proper.
(c) Define the omega-limit set $\omega(x, f)$ of a point $x \in X$ and show it is a compact, invariant set.
(d) Prove or disprove: For every $x \in X$, that $\omega(x, f) \subset \Lambda(f)$.
2. Let (X, d) be a compact metric space and $f: X \rightarrow X$ a homeomorphism.
(a) Show that there is always an f-invariant subset $Z \subset X$ so that f restricted to Z is minimal.
(b) Show that there is always a measure μ so that $(X, d, \mathcal{B}, \mu, f)$ is a mph.
3. Assume $(X, d, \mathcal{B}, \mu, f)$ is a mph .
(a) Define the support, $\operatorname{supp}(\mu)$, of the measure μ and show it is a compact, invariant set.
(b) Show that almost every point in $\operatorname{supp}(\mu)$ is recurrent.
(c) Show that every point in $\operatorname{supp}(\mu)$ is nonwandering.
(d) Show that $\mu(\Omega(f))=1$.
(e) If $(X, d, \mathcal{B}, \mu, f)$ is ergodic, show that f is full orbit transitive on $\operatorname{supp}(\mu)$.
(f) Show that $\operatorname{supp}(\mu) \subset \Lambda(f)$, where $\Lambda(f)$ is the recurrent set of f
4. State carefully with complete hypothesis.
(a) Birkhof's pointwise ergodic theorem
(b) Von Neumann's L^{2}-mean ergodic theorem
5. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

(a) Define the one-sided subshift of finite type Σ_{A}^{+}determined by A and the shift map $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$.
(b) Define one of the standard metrics on Σ_{A}^{+}.
(c) Show that periodic points of σ are dense in Σ_{A}^{+}.
(d) Show that $\left(\Sigma_{A}^{+}, \sigma\right)$ is forward orbit transitive.
(e) Let N_{k} be the number of fixed points of fixed points of σ^{k} in Σ_{A}^{+}. Compute explicitly

$$
\lim _{k \rightarrow \infty} \frac{\log \left(N_{k}\right)}{k}
$$

and justify your answer completely.
6. Fix a p with $0<p<1$.
(a) Define the Bernoulli measure μ_{p} on the two-sided shift on two symbols Σ_{2}.
(b) Show that $\left(\Sigma_{2}, \mathcal{B}, \sigma, \mu_{p}\right)$ is strong mixing (you don't have to prove it is a mpt, you may assume that is true).
(c) Define $\alpha: \Sigma_{2} \rightarrow \mathbb{R}$ by

$$
\alpha\left(\ldots s_{-1} s_{0} s_{1} s_{2} \ldots\right)=2 s_{-1}-s_{0}+s_{2}^{2}
$$

Compute the following limit for μ_{p}-almost every sequence in $\underline{s} \in \Sigma_{2}$:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \alpha\left(\sigma^{i}(\underline{s})\right)
$$

and justify your answer completely.
7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=(3 x,(1 / 2) y)$.
(a) Show that the origin is an unstable fixed point for f.
(b) Find an invariant, Borel probability measure for f (Hint: don't try to hard).
(c) Show that your invariant measure in (b) is the only invariant, Borel probability measure.

