Combinatorics Exam

August 2017

1. Let a_{n} denote the number of strings of the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D such that the letter A appears an odd number of times.
(a) Find a closed formula for a_{n}.
(b) Find the exponential generating function for the sequence $\left\{a_{n}\right\}$. (using no summation signs)
2. The set $[n] \times[n]$ is partially ordered by the relation $(a, b) \preceq(c, d)$ which holds when $a \leq c$ and $b \leq d$. Find, with proof, the length of a maximum chain and the length of a maximum antichain.

What is the size of a minimum chain decomposition of this poset. (Recall that a chain decomposition of a poset is a partition of its elements into disjoint chains.)
3. (a) Prove that, for a simple graph G with at least 5 vertices, at least one of G or its complement has a cycle.
(b) Suppose that you color the edges of K_{n} using 2 colors. Show that there exists a monochromatic spanning tree.
4. A parity check matrix H of a binary linear code C can be defined as a generator matrix of the dual code C^{\perp}.

Show that C is the null space of the transpose H^{T}, where multiplication by H^{T} is on the right, i.e., $c H^{T}$.

Show thet the minimum distance of the code equals the cardinality of a minumum dependent set of columns of H.

If a generator matrix of a binary linear code C is

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right),
$$

then show that $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ is a codeword if and only if (modulo 2)

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =0 \\
c_{2}+c_{4} & =0 \\
c_{1}+c_{5} & =0 .
\end{aligned}
$$

What is the minimum distance of this code?
5. Let $g(n)$ be the number of permutations of length n in which each cycle is of even length. Find the exponential generating function of the sequence $g(n)$, where $n=0,1,2, \cdots$.
6. Let t_{n} be the total number of cycles of all permutations of length n. So $t_{1}=1$, $t_{2}=3$, and $t_{3}=11$. Find an explicit formula for the numbers t_{n}. Your answer can contain one summation sign.
7. Prove that the language $\left\{\mathrm{a}^{n^{2}}: n \in \mathbb{N}\right\}$ is not regular.
8. Let β be a permutation of length k. Prove that there are precisely $k^{2}+1$ permutations of length $k+1$ containing β.

