COMBINATORICS EXAM

1. (a) Prove that

$$
\sum_{i=0}^{n}\binom{i}{k}=\binom{n+1}{k+1}
$$

(b) Prove that the number of solutions of $x_{1}+\cdots+x_{k} \leq n$ in positive integers is $\binom{n}{k}$.
2. (a) Prove that the number of Hamiltonian cycles in the complete bipartite graph $K_{n, n}$ is $\frac{1}{2}(n-1)!n!$.
(b) Let e be an edge of the complete graph K_{n}. Use Cayley's Theorem to find the number of spanning trees in $K_{n}-e$.
3. Recall that the average degree of a graph G of order n is

$$
a v(G)=\frac{\sum_{v \in V} \operatorname{deg}(v)}{n}
$$

(a) Prove that

$$
\chi(G) \leq 1+\Delta(G)
$$

where χ denotes the chromatic number and Δ the maximum degree.
(b) For an arbitrary graph G, prove or give a counterexample to the statement

$$
\chi(G) \leq 1+\operatorname{av}(G)
$$

4. Let C be a binary code and let \bar{C} be the code obtained from C by adding an even parity check. Find the minimum distance $d(\bar{C})$ in terms of $d(C)$.
5. Prove that balanced incomplete block designs with the following parameters do not exist:

$$
(12,8,6,4,3)
$$

(22, 22, 7, 7, 2).
6. Find the unique sequence $\left\{a_{n}\right\}$ with

$$
\sum_{k=0}^{n} a_{k} a_{n-k}=1
$$

7. Use inclusion-exclusion to find a formula for the number of surjective functions $f: X \rightarrow Y$ with $|X|=n$ and $|Y|=m$.
8. Let $f(n, k)$ be the number of k-subsets of $\{1,2, \ldots, n\}$ that do not contain a pair of consecutive integers.
(a) Find a recurrence for $f(n, k)$ by considering the k-subsets that do, and do not, contain 1.
(b) Use part (a) to show that $f(n, k)=\binom{n-k+1}{k}$.
