PhD Analysis Exam, Spring 2015

DO SIX OF EIGHT. ANSWER EACH PROBLEM ON A SEPARATE SHEET OF PAPER. WRITE SOLUTIONS IN A NEAT AND LOGICAL FASHION, GIVING COM-PLETE REASONS FOR ALL STEPS.

- 1. Let X and Y be topological spaces. Prove, if $f : X \to Y$ is continuous, then f is $\mathscr{B}_X - \mathscr{B}_Y$ measurable (that is, measurable with respect to the Borel σ -algebras on X and Y respectively).
- 2. (Short Answer.) Do two of three.
 - (i) Give an example, if possible, of a closed subset F of \mathbb{R} of positive measure which contains no nontrivial open interval.
 - (ii) Give an example, if possible, which shows that the σ -finite hypothesis is needed in Tonelli's Theorem.
 - (iii) Determine the limit of the sequence,

$$\int_{1}^{\infty} \frac{\sin(nx)}{x^n} \, dx$$

3. Let (X, \mathcal{M}, μ) be a measure space and $(f_n)_{n=1}^{\infty}$ be a sequence from $L^1(\mu)$. Prove, if there is a $g \in L^1(\mu)$ such that $g(x) \ge |f_n(x)|$ for all n and $x \in X$, then

$$\lim_{\delta \to 0} \sup_{n} \int_{|f_n| < \delta} |f_n| \, d\mu = 0$$

- 4. Prove, if $E \subset \mathbb{R}$ is a Lebesgue measurable set of positive measure, then $E E = \{x y : x, y \in E\}$ contains a nontrivial open interval.
- 5. Let (X, \mathcal{M}, μ) be a measure space and $1 \leq p < q < \infty$. Prove, $L^q(\mu) \subset L^p(\mu)$ if and only if there is a (real) constant K such that for each $E \in \mathcal{M}$ either $\mu(E) \leq K$ or $\mu(E) = \infty$.
- 6. Prove, if X is a Banach space and M is a finite dimensional subspace of X, then there is a closed subspace N of X such that $M \cap N = (0)$ and M + N = X.
- 7. Suppose $\|\cdot\|$ and $\|\cdot\|_*$ are both norms on a vector space X and $\|x\| \le \|x\|_*$ for all $x \in X$. Show, if both $(X, \|\cdot\|)$ and $(X, \|\cdot\|_*)$ are Banach spaces, then these norms are equivalent.
- 8. (Short Answer. Do two of three)
 - (a) Explain why c_{00} can not be a Banach space.
 - (b) Explain why there is no bounded one-one onto linear map from c_0 to ℓ^{∞} .
 - (c) Explain what is meant by the Fourier transform of a function $f \in L^2(\mathbb{R})$.