PhD Analysis Examination May 2014

You must answer SIX questions. Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

- 1. Let (X, \mathcal{M}, μ) be a measure space and $f \in L^1(\mu)$. Prove that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $\mu(E) < \delta$, then $\int_E |f| d\mu < \epsilon$.
- 2. State the Hahn decomposition theorem for signed measures. Prove that if ρ is a signed measure on a measurable space (X, \mathscr{M}) , then there exist unique positive measures ρ_+, ρ_- such that $\rho_+ \perp \rho_-$ and $\rho = \rho_+ \rho_-$.
- 3. State the Fubini-Tonelli theorem and give a sketch of its proof.
- 4. Let $C^{1}[0, 1]$ denote the set of all continuous (real-valued) functions f on [0, 1] such that f is differentiable in (0, 1) and f' extends continuously to [0, 1]. Prove that $C^{1}[0, 1]$ is a Banach space under the norm

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

- 5. Let \mathcal{X} be a normed vector space (over \mathbb{C}) and $\mathcal{M} \subset \mathcal{X}$ a closed subspace. Prove that if $x \in \mathcal{X} \setminus \mathcal{M}$, then $\mathcal{M} + \mathbb{C}x$ is closed.
- 6. a) State the Closed Graph Theorem and the Banach Isomorphism Theorem. b) Assuming the Banach Isomorphism Theorem (or otherwise), prove the Closed Graph Theorem.
- 7. Let \mathcal{X} be a Banach space and \mathcal{Y} a normed vector space. Suppose that T_n is a sequence of bounded linear operators from \mathcal{X} to \mathcal{Y} . Prove that if $\lim T_n x$ exists for each $x \in \mathcal{X}$, then the mapping $Tx = \lim T_n x$ defines a bounded linear operator from \mathcal{X} to \mathcal{Y} .
- 8. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Prove that the simple functions that belong to $L^2(\mu)$ are dense in $L^2(\mu)$.