Be sure to carefully present all work in a neat and logical fashion. Do not leave any gaps. State clearly theorems used in your proofs. Print your name on each sheet turned in.

- (1) (a) State the Vitali convergence theorem (define all terms).(b) Use this theorem to prove the Lebesgue Dominated Convergence theorem (first state this theorem).
- (2) Let f be an integrable function on (S, Σ, μ) . Let ν be the indefinite integral of ν . Let $|\nu|(.)$ denote the total variation of ν defined on Σ . Show that $|\nu|(.)$ is the indefinite integral of an a.e. unique integrable function g. What is the relationship between g and f? Prove.
- (3) Let (S, Σ, μ) be a finite measure space. Suppose x^* belongs to the dual space of $L^1(S, \Sigma, \mu)$. Show that there exist an a.e. unique integrable function g such that

$$x^*(f) = \int_S fg \, d\mu$$
, for each $f \in L^1(S, \Sigma, \mu)$.

[You need not prove that $g \in L^{\infty}$, etc].

- (4) Let $\{y_n\}$ be an orthogonal sequence in a Hilbert space. Show $\sum y_n$ converges unconditionally if and only if $\sum |y_n|^2 < \infty$.
- (5) Let X be a Banach space with closed linear subspaces Y and Z. Suppose each x in X is the unique sum y + z where $y \in Y$ and $z \in Z$. Show that there is a constant K such that $|y| \leq K|x|$ and $|z| \leq K|x|$ for each x in X with representation x = y + z.

[Hint: Use the open mapping theorem or closed graph theorem for certain maps]

(6) Let $\{x_n\}$ be a weakly convergent sequence in a normed space X. Show that the weak limit belongs to the norm closed span of x_n .