PhD Analysis Examination May 2010

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Do any seven problems.

1. Consider Lebesgue measure on the real line \mathbb{R}. Give an example for each of the following, if possible. If not possible, give a brief explanation. A sequence f_{n} in $L^{1}(\mathbb{R})$ converging to an f in $L^{1}(\mathbb{R}) \ldots$
a) ...in the L^{1} norm but not in measure,
b) ...in measure but not in the L^{1} norm,
c) ...in the L^{1} norm but not a.e.,
d) ...a.e. but not in measure.

Which of these answers change if we replace \mathbb{R} by the interval $[0,1]$?
2. Define the Hardy-Littlewood maximal function. State and prove the Hardy-Littlewood maximal theorem. (Begin by proving an appropriate covering lemma.)
3. a) State Egorov's theorem.
b) Suppose (X, \mathscr{M}, μ) is a measure space with $\mu(X)<\infty$ and f : $X \rightarrow \mathbb{C}$ is measurable. Let $\left(f_{n}\right)$ be a sequence of integrable functions such that $f_{n} \rightarrow f$ a.e. Suppose further that the sequence f_{n} is uniformly integrable, that is, for every $\epsilon>0$ there exists a $\delta>0$ süch that if E is measurable and $\mu(E)<\delta$, then

$$
\int_{E}\left|f_{n}\right| d \mu<\epsilon .
$$

Prove that f is integrable and $\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0$.
4. Let \mathcal{X}, \mathcal{Y} be Banach spaces. Suppose that $\left(T_{n}\right)$ is a sequence of bounded linear operators from \mathcal{X} to \mathcal{Y} such that $\lim T_{n} x$ exists for every $x \in \mathcal{X}$. Prove that

$$
T x:=\lim T_{n} x
$$

defines a bounded linear operator from \mathcal{X} to \mathcal{Y}.
5. a) State the Lebesgue-Radon-Nikodym theorem.
b) State and prove a version of the chain rule for Radon-Nikodym derivatives.
6. Let X be a normed vector space. Given $x \in X$, define a linear functional $\hat{x}: X^{*} \rightarrow \mathbb{C}$ by $\hat{x}(f)=f(x)$. Prove that the map $x \rightarrow \hat{x}$ is an isometry from X into $X^{* *}$.
7. Let \mathcal{H} be a Hilbert space and suppose \mathcal{M}, \mathcal{N} are closed subspaces with $\mathcal{M} \perp \mathcal{N}$. Prove that $\mathcal{M}+\mathcal{N}$ is closed.
8. Suppose $\left(k_{n}\right)_{n=1}^{\infty}$ is a sequence of functions in $L^{1}(\mathbb{R})$ satisfying:
a) $\int_{-\infty}^{\infty} k_{n}(t) d t=1$ for all n,
b) $\sup _{n} \int_{-\infty}^{\infty}\left|k_{n}(t)\right| d t<\infty$, and
c) for each $\delta>0, \sup _{|t| \geq \delta .}\left\{\left|k_{n}(t)\right|\right\} \rightarrow 0$ as $n \rightarrow \infty$.

Prove that $\lim _{n \rightarrow \infty}\left\|f-f * k_{n}\right\|_{1}=0$ for all $f \in L^{1}(\mathbb{R})$.
(Here * denotes convolution: $(f * g)(x):=\int_{-\infty}^{\infty} f(x-t) g(t) d t$.)

