PhD Analysis Examination May 2010

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Do any seven problems.

1. Consider Lebesgue measure on the real line \mathbb{R} . Give an example for each of the following, if possible. If not possible, give a brief explanation.

A sequence f_n in $L^1(\mathbb{R})$ converging to an f in $L^1(\mathbb{R})$...

- a) ... in the L^1 norm but not in measure,
- b) ... in measure but not in the L^1 norm,
- c) ... in the L^1 norm but not a.e.,
- d) ...a.e. but not in measure.

Which of these answers change if we replace \mathbb{R} by the interval [0, 1]?

- 2. Define the Hardy-Littlewood maximal function. State and prove the Hardy-Littlewood maximal theorem. (Begin by proving an appropriate covering lemma.)
- 3. a) State Egorov's theorem.
 - b) Suppose (X, \mathcal{M}, μ) is a measure space with $\mu(X) < \infty$ and $f: X \to \mathbb{C}$ is measurable. Let (f_n) be a sequence of integrable functions such that $f_n \to f$ a.e. Suppose further that the sequence f_n is uniformly integrable, that is, for every $\epsilon > 0$ there exists a $\delta > 0$ such that if E is measurable and $\mu(E) < \delta$, then

$$\int_E |f_n|\,d\mu<\epsilon.$$

Prove that f is integrable and $\lim_{n\to\infty}\int_X |f_n - f| d\mu = 0.$

4. Let \mathcal{X}, \mathcal{Y} be Banach spaces. Suppose that (T_n) is a sequence of bounded linear operators from \mathcal{X} to \mathcal{Y} such that $\lim T_n x$ exists for every $x \in \mathcal{X}$. Prove that

$$Tx := \lim T_n x$$

defines a bounded linear operator from \mathcal{X} to \mathcal{Y} .

- 5. a) State the Lebesgue-Radon-Nikodym theorem.
 - b) State and prove a version of the chain rule for Radon-Nikodym derivatives.
- 6. Let X be a normed vector space. Given $x \in X$, define a linear functional $\hat{x} : X^* \to \mathbb{C}$ by $\hat{x}(f) = f(x)$. Prove that the map $x \to \hat{x}$ is an isometry from X into X^{**} .
- 7. Let \mathcal{H} be a Hilbert space and suppose \mathcal{M} , \mathcal{N} are closed subspaces with $\mathcal{M} \perp \mathcal{N}$. Prove that $\mathcal{M} + \mathcal{N}$ is closed.
- 8. Suppose $(k_n)_{n=1}^{\infty}$ is a sequence of functions in $L^1(\mathbb{R})$ satisfying:

a)
$$\int_{-\infty}^{\infty} k_n(t) dt = 1$$
 for all n ,

b)
$$\sup_{n} \int_{-\infty} |k_n(t)| dt < \infty$$
, and

c) for each $\delta > 0$, $\sup_{|t| \ge \delta} \{|k_n(t)|\} \to 0 \text{ as } n \to \infty.$

Prove that $\lim_{n\to\infty} \|f - f * k_n\|_1 = 0$ for all $f \in L^1(\mathbb{R})$. (Here * denotes convolution: $(f * g)(x) := \int_{-\infty}^{\infty} f(x - t)g(t) dt$.)