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1. State and prove the Fubini theorems.

2. (a) State the Vitali integral convergence theorem.
(b) State the Lebesgue Dominated Convergence Theorem.
(c) Use (a) to prove (b) [the convergence in measure version].

3. (a) Let µ : Σ → [−∞,∞] be countably additive, where Σ is a σ-algebra.
Define positive and negative sets for µ and state the Hahn decomposition
theorem for µ.
(b) Let µ be as above. Does there exist a set E ∈ Σ such that µ(E) is the
minimum value for µ on Σ? Prove.

4. Suppose {fn} is a sequence of integrable functions with the property that∑ ∫
|fn|dµ <∞. Analyze the pointwise convergence of

∑
fn(x), for x ∈ X.

5. Let Y be an orthonormal set in a Hilbert space and suppose f : Y → C is
given. State necessary and sufficient conditions for

∑
y∈Y f(y)y to converge.

Prove.

6. Let X be a normed space and π : X→ X∗∗ the natural map. Under what
conditions is π(X) closed in X∗∗ (equipped with the norm topology)? Prove.

7. (a) State the Principle of Uniform Boundedness for a family of operators.
(b) Let X be a normed space. Use (a) to show that if A ⊂ X satisfies
supa∈A |x∗a| <∞ for each x∗ ∈ X∗ then supa∈A |a| <∞.

8. Let X be a normed space, and assume M is a closed linear subspace of X.
Let z ∈ X \M and S = span{z,M}. Show S is closed in X.

[ Hint: Let f : S → C be defined by f(x + αz) = α, for x ∈ M and
α ∈ C. Show ‖f‖ 6 1/dist(z,M), hence f ∈ S∗.]
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