PhD Analysis Exam, January 2017

Do six of eight. Answer each problem on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

- (1) Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, $\mathcal{E} \subset \mathcal{N}$ and $f : X \to Y$ Y. Show, if the σ -algebra generated by $\mathscr E$ contains $\mathscr N$ and $f^{-1}(E) \in \mathscr M$ for all $E \in \mathscr{E}$, then f is $\mathscr{M} - \mathscr{N}$ measurable.
- (2) Suppose (X, \mathscr{M}, μ) is a measure space, $f : X \to [0, \infty)$ is measurable and $\int_X f < \infty$. For positive integers n, let $E_n = \{f \le n\}$. Show,
	- (a) the sequence $(\int_{E_n} f)$ converges to $\int f$;
	- (b) for each $\epsilon > 0$ there is a positive integer M such that

$$
\int_{E_M^c} f < \epsilon;
$$

- (c) for each $\epsilon > 0$ there is a $\delta > 0$ such that if $E \in \mathscr{M}$ and $\mu(E) < \delta$, then $\int_E f < \epsilon$.
- (3) Let (X,\mathscr{M},μ) be a measure space with completion $(X,\mathscr{M},\overline{\mu})$. Show, if $f: X \to \mathbb{R}$ is $\overline{\mu}$ measurable, then there exists a μ measurable $g: X \to \mathbb{R}$ such that $\overline{\mu}(\{x \in X : f(x) \neq g(x)\}) = 0.$
- (4) Given $f \in L^1([0,1])$, let $g(x) = \int_x^1$ $f(t)$ $\frac{(t)}{t} dt$. Show $g \in L^1([0,1])$ and $r₁$ $r₁$

$$
\int_0^1 g(x) dx = \int_0^1 f(t) dt.
$$

- (5) Let X be a normed vector space (over \mathbb{C}). Suppose $\mathcal{M} \subset X$ is a closed subspace and $x \in X \setminus M$. Prove the subspace $\mathcal{N} = \mathcal{M} + \mathbb{C}x$ is closed in X. Prove if $\mathcal{L} \subset X$ is a finite dimensional subspace, then \mathcal{L} is closed in X.
- (6) Suppose (X, \mathcal{M}, μ) is a σ -finite measure space. Prove the set of simple functions in $L^2(\mu)$ is dense in $L^2(\mu)$.
- (7) State the Baire Category Theorem. Suppose X is a Banach space. Prove that, as a vector space, X does not have a countable basis. Show there is no norm $\|\cdot\|$ on c_{00} such that the normed vector space $(c_{00}, \|\cdot\|)$ is a Banach space.

(8) Suppose (X, \mathcal{M}, μ) is a σ -finite measure space. Recall that the mapping $\lambda: L^{\infty}(\mu) \to L^{1}(\mu)^{*}$ defined, for $g \in L^{\infty}(\mu)$, by $g \mapsto \lambda_{g}: L^{1}(\mu) \to \mathbb{C}$ where, for $f \in L^1(\mu)$,

$$
\lambda_g(f) = \int_X fg \, d\mu,
$$

is an isometric isomorphism. Prove the following special case of this duality result.

Suppose (X, \mathscr{M}, μ) is a finite measure space. Let $L^1_{\mathbb{R}}(\mu)$ denote the real Banach space of real-valued functions in $L^1(\mu)$. Suppose $\lambda \in L^1_{\mathbb{R}}(\mu)^*$ (the dual space) and $\lambda(f) \geq 0$ for each $f \in L^1_{\mathbb{R}}(\mu)$ such that $f \geq 0$ (pointwise). Prove there is an integrable function $g: X \to \mathbb{R}$ such that

$$
\lambda(f) = \int_X fg \, d\mu.
$$