Instructions: Do any 7 of the 11 problems, and mark clearly which problems you want graded if you try more than 7. State clearly any theorems that you use. Time: 4 hours.

1. Suppose $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes, and $K=\mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{r}}\right)$, find the Galois group of K / \mathbb{Q}. How many fields F are there such that $\mathbb{Q} \subseteq F \subseteq K$?
2. (i) Show that if K / k and L / K are separable algebraic extensions, then so is L / k. (ii) Give an example of normal extensions $K / k, L / K$ such that L / k is not normal.
3. Suppose K is an algebraic extension field of k and \bar{k} is an algebraic closure of k. Show that K / k is separable if and only if the $\operatorname{ring} \bar{k} \otimes_{k} K$ has no nonzero nilpotent elements.
4. Suppose A is a commutative ring with identity and $S \subset A$ is a multiplicative set not containing 0. (i) Show that there is a prime ideal $\mathfrak{p} \subset A$ such that $\mathfrak{p} \cap S=\phi$. (ii) Use part (i) to show that the intersection of all prime ideals of A is the set of nilpotent elements.
5. Suppose k is a field and A is a finitely generated commutative k-algebra. Let \bar{k} be an algebraic closure of k. Note that the Galois group $G=\operatorname{Gal}(\bar{k} / k)$ acts on the set $\operatorname{Hom}_{k}(A, \bar{k})$ of k-algebra homomorphisms $A \rightarrow \bar{k}$ by composition. Construct a bijection of the set of orbits of G on $\operatorname{Hom}_{k}(A, \bar{k})$ with the set of maximal ideals in A.
6. Suppose A is an integral domain. Show that an ideal $I \subseteq A$ is invertible if and only if it is projective and finitely generated.
7. Suppose X is a nonempty set and $F(X)$ is the free group on X. Show that $F(X)$ is abelian if and only if X is a singleton.
8. (i) Define what it means for a group to be nilpotent. (ii) Show that if G is a finite nilpotent group, then any Sylow subgroup is normal.
9. Suppose A is a commutative ring with identity and B is a commutative A-algebra with structure map $f: A \rightarrow B$. Show that the forgetful functor from the category of B-modules to the category of A-modules induced by f has a left adjoint.
10. Let p be a prime. Find all the isomorphism classes of noncommutative semisimple rings A of cardinality p^{10}.
11. Suppose R is a finite commutative ring with identity, such that $x^{3}=x$ for all $x \in R$. Show that R is a finite direct sum of fields isomorphic to \mathbb{F}_{2} or \mathbb{F}_{3}.
