1. Let F be a field and let $g(X) \in F[X]$. Prove that if E / F and E^{\prime} / F are splitting fields for $g(X)$ then there is an isomorphism $\phi: E \rightarrow E^{\prime}$ such that $\left.\phi\right|_{F}=\mathrm{id}_{F}$.
2. Let F be a splitting field over \mathbb{Q} for the polynomial $h(X)=X^{12}-1$. Determine the Galois group $G=\operatorname{Gal}(F / \mathbb{Q})$. For each subgroup H of G determine the fixed field F^{H}.
3. (a) Prove that there exists a one-to-one ring homomorphism

$$
\phi: \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q}[[X]] .
$$

(b) Give an example of an element of $\mathbb{Q}[[X]]$ which is not in the image of ϕ.
4. Let \mathcal{C} be a category and let Λ be a set. For each $\lambda \in \Lambda$ let X_{λ} be an object in \mathcal{C}.
(a) Give the definition of a coproduct of the collection of objects $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$.
(b) Prove that any two coproducts of the collection $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ are isomorphic.
(c) Let \mathcal{C} be the category of abelian groups. Prove that every collection $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ of objects in \mathcal{C} has a coproduct in \mathcal{C}.
5. Give an example of a ring R and a left R-module M such that M is projective but not free. Justify any claims that you make.
6. Let X be a set, let Y be subset of X, and let F be a group which is free on X. Let N be the smallest normal subgroup of F which contains Y. Prove that F / N is a free group. (Hint: Show F / N is free on the set $X \backslash Y$.)
7. Let A be a commutative ring with $1 .$.
(a) Prove that if I_{1} and I_{2} are ideals in A and P is a prime ideal in A such that $I_{1} \cap I_{2}=P$ then $I_{1}=P$ or $I_{2}=P$.
(b) Is the above statement still true if the word "prime" is replaced by "primary"? Justify your answer.
8. Let R be a commutative ring with 1 and let $S \subset R$ be a multiplicative set which does not contain zero and does not contain any zero divisors. Prove that the prime ideals of the ring $S^{-1} R$ are in one-to-one correspondence with the prime ideals P of R such that $P \cap S=\emptyset$.
9. Give an example of each of the following. Justify any claims you make.
(a) A Dedekind domain which is not a PID.
(b) An integral domain which is not integrally closed in its field of fractions.
(c) A field of characteristic p which is not perfect.

10 . Let R be a ring and let $J(R)$ be the Jacobson radical of R.
(a) Let I be a left ideal of R all of whose elements are nilpotent. Prove that I is contained in $J(R)$.
(b) Give an example that shows that R may contain nilpotent elements which do not lie in $J(R)$.
(c) Prove that if R is left Artinian then there is $n \geq 1$ such that $J(R)^{n}=0$.
11. Let R be a commutative Noetherian ring with 1 and let $\phi: R \rightarrow R$ be an onto ring homomorphism. Prove that ϕ is one-to-one.

