Ph.D. Algebra Exam - September 2009

Time allowed: Four Hours

Do seven of the following eleven problems. Do not turn in more than seven problems. You must show your work. Answers with no work and/or no explanations will receive no credit. State clearly any theorem you use in your proofs.

In the problems, \mathbf{Z}, resp. \mathbf{Q}, \mathbf{C}, is the set of all integers, resp. of all rational numbers, of all complex numbers.

1. State and prove the Jordan-Hölder theorem for finite groups.
2. (a) Show that the additive group of a field is never a free abelian group.
(b) Show that the multiplicative group of positive rational numbers is a free abelian group, and find a basis.
3. A category \mathcal{C} is small if its class of objects is a set, and skeletal if for all X and Y in $\mathcal{C}, X \simeq Y$ implies $X=Y$. Show that any small category is equivalent to a skeletal one (choose an object from each isomorphism class).
4. Let R be a commutative ring. (a) Define what it means for an R-module M to be flat. (b) Show that the polynomial ring $R[x]$, considered as an R-module in the natural way, is flat.
5. Show that if R is a commutative ring with identity and every prime ideal of R is finitely generated, then R is Noetherian.
6. Show that for any extension $A \rightarrow B$ of commutative rings, any A-module M and any B-module N, there is an isomorphism

$$
\operatorname{Hom}_{B}\left(M \otimes_{A} B, N\right) \simeq \operatorname{Hom}_{A}\left(M, N_{A}\right)
$$

functorial in M and N (here N_{A} denotes N considered as an A-module by means of the ring homomorphism $A \rightarrow B$).
7. (a) Show that if $L / F, K / L$ are finite separable extensions, then so is K / F. (b) Do the same for purely inseparable extensions.
8. (a) Show that if K / F is a normal extension and $F \subseteq L \subseteq K$ is an intermediate field, then K / L is normal. (b) Give an example where \bar{L} / F is not normal. (c) Give an example of normal extensions $L / F, K / L$ where K / F is not normal.
9. Let p is a prime and K is the splitting field over \mathbf{Q} of $X^{p}-1$. (a) Show that K contains a unique quadratic extension of \mathbf{Q}. (b) When is this quadratic extension real? (You may assume as known the structure of the Galois group of K / \mathbf{Q}. hint: if ζ is primitive $p^{t h}$ root of unity, complex conjugation sends $\left.\zeta \mapsto \zeta^{-1}\right)$.
10. Let k be a field and R a finite-dimensional k-algebra. Show that if R is semisimple as a ring, it is a direct sum of extensions fields of k.
11. Classify up to isomorphism all semisimple rings with 720 elements.

