Ph.D. Algebra Exam - September 2003

Time allowed: 240 minutes

Do seven of the following eleven problems. Do not turn in more than seven problems. You must show your work. Answers with no work and/or no explanations will receive no credit. State clearly any theorem you use in your proofs.

In the problems, **Z**, resp. **Q**, **C**, is the set of all integers, resp. of all rational numbers, of all complex numbers.

- 1. Consider the following statement A(P): "If a normal subgroup H of a group G and the quotient G/H both have property P, then so does G." Prove or disprove A(P), where
 - a) P is "being solvable";
 - b) P is "being nilpotent".
- 2. Inside the symmetric group S_7 , consider the subgroup G generated by the permutations (1234567) and (235)(476). Let

$$H = \langle a, b \mid a^7 = b^3 = 1, bab^{-1} = a^2 \rangle.$$

Show that $G \simeq H$.

- 3. Let G be a finite group with exactly one maximal subgroup. Prove that G is cyclic of prime power order.
- 4. Let **F** be a finite field of finite cardinality q and n be any natural number. Show that there is at least one irreducible polynomial $f \in \mathbf{F}[x]$ of degree n.
- 5. Let A be a commutative ring with identity. Suppose that M and N are free A-modules with m and n generators, respectively. Prove that if $M \simeq N$ then m = n.
 - 6. a) Give an example of a projective Z-module and an example of an injective Z-module.
- b) Let A be a finite abelian group considered as a **Z**-module and let I be an injective **Z**-module. Compute $A \otimes_{\mathbf{Z}} I$.
- 7. Let $\alpha \in \mathbf{C}$ be such that $[\mathbf{Q}(\alpha) : \mathbf{Q}] = 2003$. Let \mathbf{E}/\mathbf{Q} be a normal closure of $\mathbf{Q}(\alpha)/\mathbf{Q}$. Prove that $[\mathbf{E} : \mathbf{Q}]$ divides 2003!.
 - 8. Let $\xi \in \mathbf{C}$ be a primitive 77th root of unity in \mathbf{C} , and let $\mathbf{F} = \mathbf{Q}(\xi)$.
- a) Briefly explain why \mathbf{F}/\mathbf{Q} is a Galois extension, and describe the structure of the Galois group $Aut_{\mathbf{Q}}(\mathbf{F})$.
 - b) Find the number of subfields of F that are quadratic extensions of Q.
 - 9. State and prove the Hilbert Basis Theorem.
- 10. Let D be a Dedekind domain and F be the group of fractional ideals of D. Prove that any nontrivial element in F has infinite order.
- 11. Let R be a commutative ring with identity such that every element $x \in R$ satisfies $x^{n(x)} = x$ for some integer $n(x) \ge 1$ depending on x. Prove that the Jacobson radical of R is 0.