PhD Algebra Examination; September, 2000

Work exactly seven out of the following eleven exercises.

- 1. (a) Define solvable group.
 - (b) Prove that the homomorphic image of a solvable group is solvable.
 - (c) Prove that a free group is solvable if and only if it is the free group on at most one generator.
- 2. Let G be a group; call $g \in G$ a non-generator if, for each subset X of G so that $X \cup \{g\}$ generates G, then, in fact, X itself generates G. Let Fr(G) denote the set of all non-generators of G.
 - (a) Prove that Fr(G) is a subgroup of G.
 - (b) Show that Fr(G) is the intersection of all maximal (proper) subgroups of G. (Careful with Zorn's Lemma!)
- 3. Suppose that R is a principal ideal domain. Prove that any submodule of a free R-module is free.
- 4. Suppose (m,n)=1. Compute $\mathbb{Z}_m\otimes_{\mathbb{Z}}\mathbb{Z}_n$. Justify your answer.
- 5. Let R be a finite semisimple ring with identity. Suppose that no fourth power $k^4 > 1$ $(k \in \mathbb{N})$ divides |R|. Prove that R is commutative, and therefore a direct product of fields.
- 6. Suppose that R is a ring with identity. Prove that

$$\operatorname{Hom}_{\mathbf{Ab}}(B, \prod_{i \in I} G_i) \cong \prod_{i \in I} \operatorname{Hom}_{\mathbf{Ab}}(B, G_i),$$

as right R-modules, for all left R-modules B and all abelian groups G_i ($i \in I$). Ab denotes the category of all abelian groups together with all homomorphisms between them.

You may use resources from category theory; if so, outline your argument so that it is clear which theorems you are appealing to.

7. Prove Nakayama's Lemma: let A be a commutative ring with identity. Let M be a finitely generated A-module, and I be an ideal of A, contained in the Jacobson radical J(A) of A. Show that if IM = M then $M = \{0\}$.

- 8. Let A be a commutative ring with identity. For each multiplicative system S of A, prove that $S^{-1}A$ is a flat A-module.
- 9. Suppose that A is a subring of the commutative ring B with 1. If B is integral over A, prove that every homomorphism f of A into the algebraically closed field L admits an extension to a homomorphism $g: B \longrightarrow L$.
- 10. Let Θ_p be the p-th cyclotomic polynomial over the field \mathbb{Q} , where p is a prime number. Show that the Galois group of the splitting field of Θ_p over \mathbb{Q} is cyclic of order p-1. (Be clear about any theorems you quote.)
- 11. Consider the polynomial over the field \mathbb{F}_2 of two elements: $g(x) = x^4 + x^3 + x^2 + x + 1$.
 - (a) Prove that g(x) is irreducible over \mathbb{F}_2 .
 - (b) Let K be a splitting field for g(x) over \mathbb{F}_2 , and let $r \in K$ be a root of g(x). Factor g(x) into irreducibles over $\mathbb{F}_2(r)$.
 - (c) Show that $K = \mathbb{F}_2(r)$.
 - (d) Find the Galois group $Gal(K/\mathbb{F}_2)$.