Ph.D. Level Examination in Algebra Summer 1989

Do 7 out of the following questions:.

- 1. (a) Define: Solvable group.
- (b) State the Burnside's theorem for solvability of a finite group.
- (c) Let H be a normal subgroup of a group G. Prove that $C_G(H)$ is a normal subgroup of G.
- (d) Let G be a finite group of order 12. Prove that G has a non-trivial normal 2-subgroup (i.e., there is a subgroup T of G such that $1 \neq T$, and T is a 2-subgroup, and T is normal in G).
- 2. Two permutation representations $\phi_i: G \to \Sigma(X_i)$, (the symmetric group on X_i), are equivalent if there exists $\alpha: X_1 \to X_2$ such that for all $g \in G$, $x \in X_1$, we have $x(g\phi_1)\alpha = x(\alpha)(g\phi_2)$.

Prove or disprove that the following two permutation representations of S_4 of degree 6 are equivalent:

- (a) on the right coset space of < (12)(34), (13)(24) >.
- (b) on the right coset space of <(12),(34)>.
- 3. Let F_n be the free group on n generators $x_1, ..., x_n$. Let F'_n denotes the commutator subgroup. Prove that F_n/F'_n is the free abelian group on $\{x_1, ..., x_n\}$.
- 4. In each of the following groups decide whether it is a semi-direct product of two of its proper subgroups: D_4 (the dihedral group of order 8); Q_8 (the quaternion group of order 8). Justify your answer.
- 5. Let A be a commutative ring with indentity. Suppose that for each prime ideal P, the local ring A_P has no nilpotent element $\neq 0$. Show that A has no nilpotent element $\neq 0$. If each A_P is an integral domain, is A necessarily an integral domain? Justify your answer.
- 6. Let A be a commutative ring with identity, a an ideal, M an A-module. (a) Prove that $A \otimes_A M \cong M$ as A-modules.
 - (b) Prove that $(A/a) \otimes_A M$ is isomorphic to M/aM.
- 7. Let $A \subseteq B$ be integral domains, B integral over A. Prove that B is a field if and only if A is a field.
- 8. Find a minimal primary decomposition for the following ideals. Also give the prime ideals to which the primary ideals belong.
 - (a) (36) as an ideal in Z.
 - (b) (x^2, xy) as an ideal in C[x, y].
 - 9. State the following theorems.
 - (a) Nakayama's lemma.
 - (b) Hilbert basis theorem.
 - (c) Jacobson's Density theorem.
 - (d) Maschke's theorem.
- (e) Wedderburn's theorem for finite dimensional simple algebras (or Wedderburn-Artin's theorem for simple Artinian rings).