Numerical Linear Algebra Exam: May, 2019 Do **4** (four) problems.

1. (a) Show the matrix norm equality for $A \in \mathbb{C}^{m \times n}$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

- (b) Explain why the matrix 1-norm, 2-norm and ∞ -norm are the most commonly used of the matrix *p*-norms in scientific computing.
- (c) Show $\rho(A) \leq ||A||$ where ||A|| is any subordinate (induced) matrix norm and $\rho(A)$ is the spectral radius of A.
- **2.** Let $A \in \mathbb{C}^{m \times n}$ with rank(A) = n < m. Let A = QR be the QR decomposition of A, and $A = Q_1R_1$ be the economy QR decomposition.
 - (a) Show $Q_1Q_1^*$ is an orthogonal projector onto $\operatorname{Col}(A)$.
 - (b) Let $b \in \mathbb{C}^m$. Write down an expression for the least-squares solution to Ax = b as the solution to an $n \times n$ system in terms of Q_1 , (and/or Q_1^*), R_1, x and b.
- **3.** Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with rank (A) = p and $p \leq n \leq m$.
 - (a) Show $\operatorname{Col}(A^*) = \operatorname{Span}\{v_1, v_2, \dots, v_p\}$, where v_1, \dots, v_p are the first p columns of V.
 - (b) Show Null (A) =Span $\{v_{p+1}, v_{p+2}, \dots, v_n\}$.
 - (c) Suppose the right singular vectors v_1, \ldots, v_p have been computed. Describe how to compute the left singular vectors u_1, \ldots, u_p (without solving a spectral problem).
- 4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and E is $n \times n$ with $\|A^{-1}\|\|E\| < 1$, then show
 - (a) A + E is nonsinguar
 - (b)

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}$$

5. Consider the matrix A given by

Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$.

- (a) Show that A is positive definite.
- (b) Describe an algorithm that could be used to converge to λ_4 .
- (c) Describe an algorithm that could be used to converge to λ_2 .

Numerical Analysis Exam: May, 2019 Do **4** (four) problems.

- 1. Consider the fixed point problem x = f(x) where $f(x) = e^{-(2+x)}$.
 - (a) Find the largest open interval in \mathbb{R} where f(x) is a contraction.
 - (b) Assuming all computations are done in exact arithmetic, find the largest open interval in \mathbb{R} where the fixed-point iteration $x_{k+1} = f(x)$ is assured to converge.
 - (c) Write a Newton iteration for finding the fixed-point.
- **2.** Let $x_1, x_2, \ldots, x_{n+1}$ be n+1 distinct numbers. Let $l_j(x)$ be the associated Lagrange basis polynomials, $j = 1, \ldots n+1$.
 - (a) State the definition of $l_j(x)$ and show that $\{l_j(x)\}_{j=1}^{n+1}$ form a basis for \mathcal{P}_n , the space of polynomials of degree at most n.
 - (b) Show that

$$\sum_{j=1}^{n+1} (x - x_j)^k l_j(x) = 0, \quad \text{for all } k = 1, \dots, n.$$

3. Consider the interval [a, b] with the partition $a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b$. Suppose s(x) is the natural cubic spline that interpolates the data $\{(x_i, y_i)\}_{i=1}^{n+1}$, and that $g \in C^2[a, b]$ interpolates the same data. Show that

$$\int_{a}^{b} (s''(x))^{2} \, \mathrm{d} x \le \int_{a}^{b} (g''(x))^{2} \, \mathrm{d} x.$$

- 4. (a) Consider the inner product on C(0,2) given by $(f,g) = \int_0^2 f(t)g(t) \, dt$. Find three orthonormal polynomials ϕ_0, ϕ_1, ϕ_2 on (0,2) with respect to the given inner product such that the degree of ϕ_n is equal to n, n = 0, 1, 2.
 - (b) Find the nodes t_1 and t_2 and weights w_1 and w_2 which yield the weighted Gaussian Quadrature formula

$$\int_{0}^{2} f(t) \, \mathrm{d} t \approx w_{1} f(t_{1}) + w_{2} f(t_{2})$$

with degree of exactness m = 3. You should find the nodes exactly, and may leave the weights w_1, w_2 in integral form.

- 5. Let $f \in C^{\infty}(a H, a + H)$, and let h < H. Let $x_0 = a h$, $x_1 = a$ and $x_2 = a + h$.
 - (a) Find the finite difference approximation to f'(a) based the interpolant p_2 which satisfies $p_2(x_0) = f(x_0), p_2(x_1) = f(x_1)$ and $p_2(x_2) = f(x_2)$.
 - (b) Let $\psi_0(h) = \psi(h)$ be the difference approximation to f'(a) found in part (a). Assume (in exact arithmetic) $\psi(h) \to \psi(0) = f'(a)$ as $h \to 0$, and that $\psi(h)$ has the asymptotic expansion

$$\psi(h) = \psi(0) + a_2h^2 + a_4h^4 + a_6h^6 + \dots$$

Find the general Richardson extrapolation formula for $\psi_k(h)$ based on $\psi_{k-1}(h)$ and $\psi_{k-1}(h/2)$.