Numerical Linear Algebra Exam: May, 2019
 Do 4 (four) problems.

1. (a) Show the matrix norm equality for $A \in \mathbb{C}^{m \times n}$

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

(b) Explain why the matrix 1-norm, 2-norm and ∞-norm are the most commonly used of the matrix p-norms in scientific computing.
(c) Show $\rho(A) \leq\|A\|$ where $\|A\|$ is any subordinate (induced) matrix norm and $\rho(A)$ is the spectral radius of A.
2. Let $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=n<m$. Let $A=Q R$ be the $Q R$ decomposition of A, and $A=Q_{1} R_{1}$ be the economy $Q R$ decomposition.
(a) Show $Q_{1} Q_{1}^{*}$ is an orthogonal projector onto $\operatorname{Col}(A)$.
(b) Let $b \in \mathbb{C}^{m}$. Write down an expression for the least-squares solution to $A x=b$ as the solution to an $n \times n$ system in terms of Q_{1}, (and/or Q_{1}^{*}), R_{1}, x and b.
3. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p$ and $p \leq n \leq m$.
(a) Show $\operatorname{Col}\left(A^{*}\right)=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, where v_{1}, \ldots, v_{p} are the first p columns of V.
(b) $\operatorname{Show} \operatorname{Null}(A)=\operatorname{Span}\left\{v_{p+1}, v_{p+2}, \ldots, v_{n}\right\}$.
(c) Suppose the right singular vectors v_{1}, \ldots, v_{p} have been computed. Describe how to compute the left singular vectors u_{1}, \ldots, u_{p} (without solving a spectral problem).
4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show
(a) $A+E$ is nonsinguar
(b)

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

5. Consider the matrix A given by

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
-1 & 4 & -1 & 1 \\
2 & -1 & 6 & -2 \\
0 & 1 & -2 & 4
\end{array}\right)
$$

Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$.
(a) Show that A is positive definite.
(b) Describe an algorithm that could be used to converge to λ_{4}.
(c) Describe an algorithm that could be used to converge to λ_{2}.

Numerical Analysis Exam: May, 2019
 Do 4 (four) problems.

1. Consider the fixed point problem $x=f(x)$ where $f(x)=e^{-(2+x)}$.
(a) Find the largest open interval in \mathbb{R} where $f(x)$ is a contraction.
(b) Assuming all computations are done in exact arithmetic, find the largest open interval in \mathbb{R} where the fixed-point iteration $x_{k+1}=f(x)$ is assured to converge.
(c) Write a Newton iteration for finding the fixed-point.
2. Let $x_{1}, x_{2}, \ldots, x_{n+1}$ be $n+1$ distinct numbers. Let $l_{j}(x)$ be the associated Lagrange basis polynomials, $j=1, \ldots n+1$.
(a) State the definition of $l_{j}(x)$ and show that $\left\{l_{j}(x)\right\}_{j=1}^{n+1}$ form a basis for \mathcal{P}_{n}, the space of polynomials of degree at most n.
(b) Show that

$$
\sum_{j=1}^{n+1}\left(x-x_{j}\right)^{k} l_{j}(x)=0, \quad \text { for all } k=1, \ldots, n
$$

3. Consider the interval $[a, b]$ with the partition $a=x_{1}<x_{2}<\cdots<x_{n}<x_{n+1}=b$. Suppose $s(x)$ is the natural cubic spline that interpolates the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n+1}$, and that $g \in C^{2}[a, b]$ interpolates the same data. Show that

$$
\int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} \mathrm{~d} x .
$$

4. (a) Consider the inner product on $C(0,2)$ given by $(f, g)=\int_{0}^{2} f(t) g(t) \mathrm{d} t$. Find three orthonormal polynomials $\phi_{0}, \phi_{1}, \phi_{2}$ on $(0,2)$ with respect to the given inner product such that the degree of ϕ_{n} is equal to $n, n=0,1,2$.
(b) Find the nodes t_{1} and t_{2} and weights w_{1} and w_{2} which yield the weighted Gaussian Quadrature formula

$$
\int_{0}^{2} f(t) \mathrm{d} t \approx w_{1} f\left(t_{1}\right)+w_{2} f\left(t_{2}\right)
$$

with degree of exactness $m=3$. You should find the nodes exactly, and may leave the weights w_{1}, w_{2} in integral form.
5. Let $f \in C^{\infty}(a-H, a+H)$, and let $h<H$. Let $x_{0}=a-h, x_{1}=a$ and $x_{2}=a+h$.
(a) Find the finite difference approximation to $f^{\prime}(a)$ based the interpolant p_{2} which satisfies $p_{2}\left(x_{0}\right)=f\left(x_{0}\right), p_{2}\left(x_{1}\right)=f\left(x_{1}\right)$ and $p_{2}\left(x_{2}\right)=f\left(x_{2}\right)$.
(b) Let $\psi_{0}(h)=\psi(h)$ be the difference approximation to $f^{\prime}(a)$ found in part (a). Assume (in exact arithmetic) $\psi(h) \rightarrow \psi(0)=f^{\prime}(a)$ as $h \rightarrow 0$, and that $\psi(h)$ has the asympototic expansion

$$
\psi(h)=\psi(0)+a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\ldots .
$$

Find the general Richardson extrapolation formula for $\psi_{k}(h)$ based on $\psi_{k-1}(h)$ and $\psi_{k-1}(h / 2)$.

