Applied Mathematics PhD Qualifier Exam – January 3, 2018 Do 8 (eight) problems

- 1. Let **Q** denote an *n* by *n* symmetric matrix and let \mathbf{d}_k , $1 \le k \le n$, denote a collection of directions that are **Q**-conjugate.
 - (a) Suppose the **Q** is positive definite. Show that the directions \mathbf{d}_k , $1 \le k \le n$, are linearly independent, and express the solution of the linear system $\mathbf{Q}\mathbf{x} = \mathbf{b}$ in terms of the conjugate directions.
 - (b) If $\mathbf{d}_k^\mathsf{T} \mathbf{Q} \mathbf{d}_k > 0$ for each k, then show that \mathbf{Q} is positive definite.
- 2. Consider the following variational problem:

$$\min\left\{\int_0^1 \frac{1}{2}u'(x)^2 + e^{u(x)}dx : u \in H^1([0,1]), \quad u(0) = u(1) = 0\right\}$$

- (a) What is the first-order necessary optimality condition (Euler equation) for this variational problem?
- (b) Consider a uniform mesh $x_k = kh$ where h = 1/N; let u_k denote an approximation to $u(x_k)$. Of course, $u_0 = u_N = 0$. Give a finite difference approximation in terms u_1, \ldots, u_{N-1} to the solution of the Euler equation.
- (c) Let $\mathbf{F}(\mathbf{u})$ denote the finite difference system where $\mathbf{u} = (u_1, u_2, \dots, u_{N-1}) \in \mathbb{R}^{N-1}$, and let \mathbf{u}^* denote the vector formed by evaluating the solution of the Euler equation at the mesh points x_1, x_2, \dots, x_{N-1} . Obtain a bound for the components of $\mathbf{F}(\mathbf{u}^*)$ in terms of the mesh spacing h.
- 3. Consider the following variational problem where f is a given smooth function:

$$\min\left\{\Phi(u) := \int_0^1 \frac{1}{2}u'(x)^2 + f(x)u(x) \ dx : u \in H^1([0,1]), \quad u(0) = u(1) = 0\right\}.$$

Let \mathcal{S}^h denote the piecewise linear finite element space defined on a uniform mesh with $v^h(0) = v^h(1) = 0$ for all $v^h \in \mathcal{S}^h$. Obtain a bound for the error in the finite element approximation u^h obtained by minimizing Φ over \mathcal{S}^h .

- 4. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable, $\mathbf{x}^* \in \mathbb{R}^n$, $\nabla f(\mathbf{x}^*) = 0$, and $\nabla^2 f(\mathbf{x}^*)$ is positive definite. Show that \mathbf{x}^* is a strict local minimizer of f.
- 5. Suppose that a quadratic $\Phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} \mathbf{b}^{\mathsf{T}}\mathbf{x}$ is minimized by steepest descent: $\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \mathbf{g}_k$, where $\mathbf{g}_k = \nabla \Phi(\mathbf{x}_k)$ and s_k is the stepsize.
 - (a) Derive the formula for the Cauchy step.
 - (b) Derive the formula for the BB step.

6. Consider the system of differential equations $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \ \mathbf{x}(0) = \mathbf{x}_0$, where $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and \mathbf{f} satisfies the global Lipschitz condition

$$\|\mathbf{f}(\mathbf{x}_1, \mathbf{u}_1) - \mathbf{f}(\mathbf{x}_2, \mathbf{u}_2)\| \le L(\|\mathbf{x}_1 - \mathbf{x}_2\| + \|\mathbf{u}_1 - \mathbf{u}_2\|).$$

Show that the differential equation has a global solution and on any interval [0, T], the following bound holds for all $(\mathbf{u}_1, \mathbf{u}_2) \in \mathcal{L}^{\infty}([0, T])$:

$$\|\mathbf{x}_1 - \mathbf{x}_2\|_{\mathcal{L}^{\infty}} \le e^{LT} \|\mathbf{u}_1 - \mathbf{u}_2\|_{\mathcal{L}^1},$$

where \mathbf{x}_i is the solution of the differential equation associated with \mathbf{u}_i , i = 1, 2.

7. Suppose that P and Q are continuous on [0, 1] and the following functional is nonnegative over all $h \in \mathcal{H}_0^1([0, 1])$:

$$\Omega(h) = \int_0^1 P(x)h'(x)^2 + Q(x)h(x)^2 dx$$

Show that $P \ge 0$ on [0, 1].

8. Suppose that $u : [0,1] \to \mathbb{R}$ is twice continuously differentiable, and let u^I be the continuous, piecewise linear interpolant of u. Prove the following bound:

$$\|u - u^I\|_{\mathcal{L}^{\infty}} \le \frac{h^2}{8} \|u''\|_{\mathcal{L}^{\infty}}.$$

- 9. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a convex function.
 - (a) If f is continuously differentiable, then show that for all \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$, we have

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x}).$$

- (b) If f is twice continuously differentiable, then show that the Hessian $\nabla^2 f(\mathbf{x})$ is positive semidefinite for all $\mathbf{x} \in \mathbb{R}^n$.
- 10. Suppose that $\mathbf{\Phi} : \mathbb{R}^n \to \mathbb{R}^n$ and $\mathbf{x}^* \in \mathbb{R}^n$ is a fixed point of $\mathbf{\Phi}$.
 - (a) If Φ is a contraction mapping with contraction constant λ , then show that the iteration $\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k)$ converges to \mathbf{x}^* from any starting guess \mathbf{x}_0 , and

$$\|\mathbf{x}_k - \mathbf{x}^*\| \le \lambda^k \|\mathbf{x}_0 - \mathbf{x}^*\|.$$

(b) Suppose that Φ is continuously differentiable on a convex set $\mathcal{K} \subset \mathbb{R}^n$. Let μ denote the supremum of the singular values of $\nabla \Phi$ over \mathcal{K} . Show that

$$\|\boldsymbol{\Phi}(\mathbf{x}) - \boldsymbol{\Phi}(\mathbf{y})\| \le \mu \|\mathbf{x} - \mathbf{y}\|$$

for all \mathbf{x} and $\mathbf{y} \in \mathcal{K}$.