Applied Mathematics PhD Qualifier Exam - January 3, 2018
Do 8 (eight) problems

1. Let \mathbf{Q} denote an n by n symmetric matrix and let $\mathbf{d}_{k}, 1 \leq k \leq n$, denote a collection of directions that are Q -conjugate.
(a) Suppose the \mathbf{Q} is positive definite. Show that the directions $\mathbf{d}_{k}, 1 \leq k \leq n$, are linearly independent, and express the solution of the linear system $\mathbf{Q x}=\mathbf{b}$ in terms of the conjugate directions.
(b) If $\mathbf{d}_{k}^{\top} \mathbf{Q} \mathbf{d}_{k}>0$ for each k, then show that \mathbf{Q} is positive definite.
2. Consider the following variational problem:

$$
\min \left\{\int_{0}^{1} \frac{1}{2} u^{\prime}(x)^{2}+e^{u(x)} d x: u \in H^{1}([0,1]), \quad u(0)=u(1)=0\right\}
$$

(a) What is the first-order necessary optimality condition (Euler equation) for this variational problem?
(b) Consider a uniform mesh $x_{k}=k h$ where $h=1 / N$; let u_{k} denote an approximation to $u\left(x_{k}\right)$. Of course, $u_{0}=u_{N}=0$. Give a finite difference approximation in terms u_{1}, \ldots, u_{N-1} to the solution of the Euler equation.
(c) Let $\mathbf{F}(\mathbf{u})$ denote the finite difference system where $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{N-1}\right) \in \mathbb{R}^{N-1}$, and let \mathbf{u}^{*} denote the vector formed by evaluating the solution of the Euler equation at the mesh points $x_{1}, x_{2}, \ldots, x_{N-1}$. Obtain a bound for the components of $\mathbf{F}\left(\mathbf{u}^{*}\right)$ in terms of the mesh spacing h.
3. Consider the following variational problem where f is a given smooth function:

$$
\min \left\{\Phi(u):=\int_{0}^{1} \frac{1}{2} u^{\prime}(x)^{2}+f(x) u(x) d x: u \in H^{1}([0,1]), \quad u(0)=u(1)=0\right\}
$$

Let \mathcal{S}^{h} denote the piecewise linear finite element space defined on a uniform mesh with $v^{h}(0)=v^{h}(1)=0$ for all $v^{h} \in \mathcal{S}^{h}$. Obtain a bound for the error in the finite element approximation u^{h} obtained by minimizing Φ over \mathcal{S}^{h}.
4. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable, $\mathbf{x}^{*} \in \mathbb{R}^{n}, \nabla f\left(\mathbf{x}^{*}\right)=0$, and $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is positive definite. Show that \mathbf{x}^{*} is a strict local minimizer of f.
5. Suppose that a quadratic $\Phi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}$ is minimized by steepest descent: $\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbf{g}_{k}$, where $\mathbf{g}_{k}=\nabla \Phi\left(\mathbf{x}_{k}\right)$ and s_{k} is the stepsize.
(a) Derive the formula for the Cauchy step.
(b) Derive the formula for the BB step.
6. Consider the system of differential equations $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \mathbf{x}(0)=\mathbf{x}_{0}$, where $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \mathbf{f} satisfies the global Lipschitz condition

$$
\left\|\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{u}_{1}\right)-\mathbf{f}\left(\mathbf{x}_{2}, \mathbf{u}_{2}\right)\right\| \leq L\left(\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|+\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|\right)
$$

Show that the differential equation has a global solution and on any interval $[0, T]$, the following bound holds for all $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \mathcal{L}^{\infty}([0, T])$:

$$
\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|_{\mathcal{L}^{\infty}} \leq e^{L T}\left\|\mathbf{u}_{1}-\mathbf{u}_{2}\right\|_{\mathcal{L}^{1}}
$$

where \mathbf{x}_{i} is the solution of the differential equation associated with $\mathbf{u}_{i}, i=1,2$.
7. Suppose that P and Q are continuous on $[0,1]$ and the following functional is nonnegative over all $h \in \mathcal{H}_{0}^{1}([0,1])$:

$$
\Omega(h)=\int_{0}^{1} P(x) h^{\prime}(x)^{2}+Q(x) h(x)^{2} d x
$$

Show that $P \geq 0$ on $[0,1]$.
8. Suppose that $u:[0,1] \rightarrow \mathbb{R}$ is twice continuously differentiable, and let u^{I} be the continuous, piecewise linear interpolant of u. Prove the following bound:

$$
\left\|u-u^{I}\right\|_{\mathcal{L}^{\infty}} \leq \frac{h^{2}}{8}\left\|u^{\prime \prime}\right\|_{\mathcal{L}^{\infty}}
$$

9. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function.
(a) If f is continuously differentiable, then show that for all \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$, we have

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

(b) If f is twice continuously differentiable, then show that the Hessian $\nabla^{2} f(\mathbf{x})$ is positive semidefinite for all $\mathbf{x} \in \mathbb{R}^{n}$.
10. Suppose that $\boldsymbol{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathbf{x}^{*} \in \mathbb{R}^{n}$ is a fixed point of $\boldsymbol{\Phi}$.
(a) If $\boldsymbol{\Phi}$ is a contraction mapping with contraction constant λ, then show that the iteration $\mathbf{x}_{k+1}=\boldsymbol{\Phi}\left(\mathbf{x}_{k}\right)$ converges to \mathbf{x}^{*} from any starting guess \mathbf{x}_{0}, and

$$
\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\| \leq \lambda^{k}\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|
$$

(b) Suppose that $\boldsymbol{\Phi}$ is continuously differentiable on a convex set $\mathcal{K} \subset \mathbb{R}^{n}$. Let μ denote the supremum of the singular values of $\nabla \Phi$ over \mathcal{K}. Show that

$$
\|\boldsymbol{\Phi}(\mathbf{x})-\boldsymbol{\Phi}(\mathbf{y})\| \leq \mu\|\mathbf{x}-\mathbf{y}\|
$$

for all \mathbf{x} and $\mathbf{y} \in \mathcal{K}$.

