1. Let $f(x)=e^{x}$.
(a) Find the linear Taylor polynomial $T_{1}(x)$ of $f(x)$ expanded about $x_{0}=1 / 2$ and give an estimate for the maximum of $\left|T_{1}(x)-f(x)\right|$ on the interval $[0,1]$.
(b) Find the linear minimax approximation $P_{1}(x)$ to $f(x)$ on $[0,1]$ and find the maximum error of $\left|P_{1}(x)-f(x)\right|$ on $[0,1]$
(c) Find the linear least squares approximation to f on $[0,1]$.
2. The midpoint method for DE's is

$$
\begin{aligned}
w_{0} & =\alpha \\
w_{n+1} & =w_{n}+h f\left(t_{n}+\frac{h}{2}, w_{n}+\frac{h}{2} f\left(t_{n}, w_{n}\right)\right) .
\end{aligned}
$$

Apply this method to the IVP, $y^{\prime}=\lambda y ; y(0)=1$, with $\lambda<0$ and find the constant c so that $|h \lambda|<c$ implies that $w_{n} \rightarrow 0$ as $n \rightarrow \infty$.
3. Derive this three-point formula for the second derivative.

$$
f^{\prime \prime}(x)=\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)-\frac{h^{2}}{12} f^{(4)}(\eta)
$$

for some $\eta \in\left[x_{0}-h, x_{0}+h\right]$.
4. Let $f(x)=2^{x}$ Let $x_{0}=-1, x_{1}=0, x_{2}=1$. Find the total error bound for the degree two interpolating polynomial $p_{2}(x)$ with these nodes and f on the interval $[-1,1]$, i.e. derive a K with

$$
\max _{t \in[-1,1]}\left|f(t)-p_{2}(t)\right|<K
$$

5. Let $g \in C^{2}([a, b])$ and $p \in(a, b)$ with $g(p)=p, g^{\prime}(p)=0, g^{\prime \prime}(p) \neq 0$.
(a) Show there is an $\epsilon>0$ so that for all $x \in[p-\epsilon, p+\epsilon]$, we have $g^{n}(x) \rightarrow p$ as $n \rightarrow \infty$.
(b) With ϵ as in part(a), show that for all $x \in[p-\epsilon, p+\epsilon]$, we have $|g(x)-p| \leq M|x-p|^{2}$ where $M=\max \left\{\left|g^{\prime \prime}(x)\right|:|x-p| \leq \epsilon\right\} / 2$.
