Numerical Analysis Exam – August, 2017 Do all **5** (five) problems

- 1. Let $f(x) = e^x$.
 - (a) Find the linear Taylor polynomial $T_1(x)$ of f(x) expanded about $x_0 = 1/2$ and give an estimate for the maximum of $|T_1(x) f(x)|$ on the interval [0, 1].
 - (b) Find the linear minimax approximation $P_1(x)$ to f(x) on [0, 1] and find the maximum error of $|P_1(x) f(x)|$ on [0, 1]
 - (c) Find the linear least squares approximation to f on [0, 1].
- 2. The midpoint method for DE's is

$$w_0 = \alpha$$

 $w_{n+1} = w_n + hf\left(t_n + \frac{h}{2}, w_n + \frac{h}{2}f(t_n, w_n)\right).$

Apply this method to the IVP, $y' = \lambda y$; y(0) = 1, with $\lambda < 0$ and find the constant c so that $|h\lambda| < c$ implies that $w_n \to 0$ as $n \to \infty$.

3. Derive this three-point formula for the second derivative.

$$f''(x) = \frac{1}{h^2} \left(f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right) - \frac{h^2}{12} f^{(4)}(\eta)$$

for some $\eta \in [x_0 - h, x_0 + h]$.

4. Let $f(x) = 2^x$ Let $x_0 = -1, x_1 = 0, x_2 = 1$. Find the total error bound for the degree two interpolating polynomial $p_2(x)$ with these nodes and f on the interval [-1, 1], i.e. derive a K with

$$\max_{t \in [-1,1]} |f(t) - p_2(t)| < K.$$

- 5. Let $g \in C^2([a, b])$ and $p \in (a, b)$ with $g(p) = p, g'(p) = 0, g''(p) \neq 0$.
 - (a) Show there is an $\epsilon > 0$ so that for all $x \in [p \epsilon, p + \epsilon]$, we have $g^n(x) \to p$ as $n \to \infty$.
 - (b) With ϵ as in part(a), show that for all $x \in [p-\epsilon, p+\epsilon]$, we have $|g(x)-p| \le M|x-p|^2$ where $M = \max\{|g''(x)| \colon |x-p| \le \epsilon\}/2$.