Numerical Analysis Qualifying Exam - May, 2017
 Do all five (5) problems

1. With

$$
\phi(w, t)=a f(w+c h, t+b h)
$$

find the values of the parameters a, b, c so that the resulting one-step method

$$
\begin{aligned}
w_{0} & =\alpha \\
w_{i+1} & =w_{i}+h \phi\left(w_{i}, t_{i}\right)
\end{aligned}
$$

has local truncation error $O\left(h^{2}\right)$
2. Hint:the error term in the one unit Trapezoid rule is $-\frac{h^{3}}{12} f^{\prime \prime}(\eta)$ and in the one unit Simpsons' rule is $-\frac{h^{5}}{90} f^{(4)}(\eta)$.

Let S be the cubic spline given by

$$
\begin{aligned}
& S(x)=(x+1)^{3} \text { for } x \in[-1,0] \\
& S(x)=(1-x)^{3} \text { for } x \in[0,1]
\end{aligned}
$$

(a) Estimate the error of the composite trapezoidal rule applied to $\int_{-1}^{1} S(x) d x$, when $[-1,1]$ is divided into n subintervals of equal length $h=2 / n$ and n is even (and so 0 is a node).
(b) Estimate the error of the composite Simpson's rule applied to $\int_{-1}^{1} S(x) d x$, when $[-1,1]$ is divided into n subintervals of equal length $h=2 / n$ and n is divisible by 4 (and so 0 is a node).
3. (a) If $f \in C^{1}[a, b]$ and $a \leq x_{0}<\cdots<x_{n} \leq b$ and H, G are degree at most $2 n+1$ polynomials with $G\left(x_{i}\right)=H\left(x_{i}\right)=f\left(x_{i}\right)$ and $G^{\prime}\left(x_{i}\right)=H^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)$ for all i, then $G=H$.
(b) If $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ are polynomials with φ_{n} of degree n, then the set of φ_{i} is linearly independent.
4. Consider the inner product on $C[0, \infty)$ given by

$$
\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x
$$

(a) Starting with the basis $\left\{1, t, t^{2}\right\}$ for $\mathcal{P}_{2}[0, \infty)$ find three orthonormal polynomials $\phi_{0}, \phi_{1}, \phi_{2}$ on $[0, \infty)$ with respect to the inner product and the degree of ϕ_{n} is equal to n. Hint: $\int_{0}^{\infty} t^{m} e^{-t} d t=m$!.
(b) Find the equations satisfied by the values of w_{1}, w_{2}, t_{1} and t_{2} which yield the weighted Gaussian Quadrature formula

$$
\int_{0}^{\infty} f(t) e^{-t} d t=w_{1} f\left(t_{1}\right)+w_{2} f\left(t_{2}\right)
$$

with degree of precision 3 .
5. (a) Assume $g \in C^{2}[a, b]$ with $g([a, b]) \subset[a, b]$ and fixed point $p \in(a, b)$. Assume that $g^{\prime}(p)=0$. Show that for any $x \in[a, b]$ with $x \neq p$

$$
\frac{|g(x)-p|}{|x-p|^{2}} \leq M
$$

where $M=\max \left\{\left|g^{\prime \prime}(z)\right|: z \in[a, b]\right\} / 2$.
(b) Let $g(x)=x-\tan (x)$. Find a fixed point p of g with $g^{\prime}(p)=0$ and give an explicit $[a, b]$ where you prove that for all $x \in[a, b], g^{n}(x) \rightarrow p$.

