Logic PhD Exam, January 2023.

Solve 5 problems of the following; at least one from each section.

A. Set Theory.

- 1. Let X be an uncountable set. Let $f: X \to [X]^{\leq \aleph_0}$ be a function. Show that there are distinct points $x_0, x_1 \in X$ such that $x_0 \notin f(x_1)$ and $x_1 \notin f(x_0)$.
- 2. Let P be a forcing and κ be a regular cardinal larger than |P|. Show that $P \Vdash \check{\kappa}$ is a cardinal.
- 3. What is the perfect set theorem in descriptive set theory? State it and prove it.

B. Computability.

- 1. Choose one of the standard definitions of a recursive function, and show that the increasing enumeration of the Fibonacci numbers (defined by f(0) = 0, f(1) = 1 and f(n+2) = f(n) + f(n+1)) is a recursive function.
- 2. Provide an example of sets $A, B \subseteq \mathbb{N}$ such that A is Turing reducible to B but not many-one reducible to the complement of B.
- 3. Prove that a simple c.e. set exists, where a set $A \subseteq \mathbb{N}$ is simple if the complement of A has no infinite c.e. subset.

C. Model theory.

- 1. Let \mathcal{L} be a language containing two binary relational symbols E_0, E_1 . Let T be the theory stating that E_0, E_1 are equivalence relations and $E_0 \subseteq E_1$. Let \mathcal{F} be the class of finite models of T. Show that \mathcal{F} is a Fraissé class and provide a simple description of its limit.
- 2. State the Loś theorem and prove it.
- 3. Find a complete theory with more than one countably infinite model up to isomorphism. Provide two nonisomorphic countable models of the theory.