Logic PhD Exam, August 2022

Solve 5 of the following problems; at least one from each section.

A. Set Theory.

1. Let X be an uncountable set and let $F: X \to X$ be a function. Show that there are distinct elements $x, y \in X$ such that $x \neq F(y)$ and $y \neq F(x)$.

2. Let P be a forcing. Show that there is an uncountable cardinal κ such that $P \Vdash \check{\kappa}$ is a cardinal.

3. Provide an example of a subset of a Polish space which is analytic and not Borel. Provide a proof of these two properties of your set.

B. Computability.

1. Give an example of a subset of \mathbb{N} that is Π_1^0 and not Σ_1^0 (and prove that your set has these two properties).

2. Prove that there exist incomparable Turing degrees.

3. Prove that there exist disjoint computably enumerable sets $A, B \subseteq \mathbb{N}$ such that there is no computable set C which contains A and is disjoint from B.

C. Model Theory.

1. Let \mathcal{L} be a language comprised of a single binary relation symbol. Give an example of a countably infinite \mathcal{L} -structure \mathcal{M} such that

- (i) $\operatorname{Th}(\mathcal{M})$ is \aleph_0 -categorical, and
- (ii) $\operatorname{Th}(\mathcal{M})$ does not have quantifier elimination.

Make sure to prove both statements (i) and (ii).

2. Let \mathcal{L} be a language comprised of two unary relation symbols G and B, and a binary relation symbol R. Let \mathcal{K} be the class of all finite graphs with a bipartition, i.e., \mathcal{K} consists of all finite \mathcal{L} -structures $\mathcal{M} = (M, G^{\mathcal{M}}, B^{\mathcal{M}}, R^{\mathcal{M}})$ such that

- (i) $R^{\mathcal{M}}$ is a symmetric and irreflexive relation on M,
- (ii) $G^{\mathcal{M}}$ and $B^{\mathcal{M}}$ form a partition of M, (iii) if $(x, y) \in R^{\mathcal{M}}$ then exactly one of x, y belongs $G^{\mathcal{M}}$ and the other belongs to $B^{\mathcal{M}}$.

Prove or disprove: \mathcal{K} is a Fraïssé class.

3. Let $\mathcal{L} = \{R\}$ be the language of graphs (i.e., R is a binary relation symbol). Let \mathcal{K}_0 be the class of all connected graphs, and let \mathcal{K}_1 be the class of all disconnected graphs. Prove or disprove each of the following: (i) \mathcal{K}_0 is an elementary class; (ii) \mathcal{K}_1 is an elementary class.