Complex Analysis, PhD Examination, May 2023

Answer FIVE (OUT OF EIGHT) QUESTIONS IN DETAIL, EXPLAINING YOUR WORK IN A PRECISE AND LOGICAL WAY. STATE CAREFULLY ANY RESULTS USED WITHOUT PROOF.
(1) Let $S=\{z \in \mathbb{C}:|z|<2, \quad|z-1|>1\}$ and $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Find an explicit analytic bijection $f: \mathbb{D} \rightarrow S$.
(2) $\operatorname{Fix} \lambda>1$. Show that the equation $\lambda-z-e^{-z}=0$ has exactly one solution in the right half plane, $\mathbb{H}=\{z \in \mathbb{C}$: real $z>0\}$.
(3) Let A be an $n \times n$ matrix and $p(z)=\operatorname{det}\left(z I_{n}-A\right)$. Show $p(A)=0$, where I_{n} is the $n \times n$ identity matrix.
(4) Show $e^{z}-z^{2}=0$ has infinitely many solutions.
(5) Find all solutions to $f^{n}+g^{n}=1$ for positive integers $n \geq 2$ and entire functions f and g.
(6) Show $\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}$.
(7) Suppose $\Omega \subseteq \mathbb{C}$ is a region (non-empty, open and connected), $\left(f_{n}\right)$ is a locally bounded sequence of analytic functions $f_{n}: \Omega \rightarrow \mathbb{C}$ and $S \subseteq \Omega$ has an accumulation point in Ω. Show, if $f: \Omega \rightarrow \mathbb{C}$ is an analytic function and $\left(f_{n}(s)\right)$ converges to $f(s)$ for each $s \in S$, then $\left(f_{n}\right)$ converges to f in $H(\Omega)$ (uniformly on compact sets).
(8) Let ζ denote the Riemann zeta function and σ the divisor function. Thus, for positive integers, $\sigma(k)$ is the number of divisors of k. Show, if real $z>1$, then

$$
\zeta(z)^{2}=\sum_{k=1}^{\infty} \frac{\sigma(k)}{k^{z}} .
$$

