UF Combinatorics PhD Exam - August 2023

1. Prove that for all positive integers n, the identity

$$
n\binom{2 n-1}{n-1}=\sum_{k=1}^{n} k\binom{n}{k}^{2}
$$

holds.
2. Let B_{n} be the number of compositions of n in which the first part is odd. Find a closed-form, explicit formula (no summation signs) for $B_{n}+B_{n+1}$.
3. How many ways are there to choose a permutation of length n and color each of its cycles red, blue, or green? Give a closed-form, explicit formula (no summation signs) in terms of n.
4. Let w_{n} be the number of words of length n over the alphabet $\{A, B, C\}$ in which a B is not immediately followed by a C. Find the explicit form of the ordinary generating function of the sequence $w_{0}, w_{1}, w_{2}, \ldots$.
5. (a) For which nonnegative integers is the Catalan number C_{n} odd?
(b) Let $a_{0}, a_{1}, a_{2}, \cdots$ be an infinite sequence that is polynomially recursive. Let b_{i} be the remainder of a_{i} modulo 2 . Does it follow that the b_{i} form a polynomially recursive sequence?
6. Prove that an r-regular graph of girth (length of the shortest cycle) four has at least $2 r$ vertices, with equality only for the complete bipartite graph $K_{r, r}$.
7. Let a and b be positive integers. We say that a is a unitary divisor of b if a divides b and a and b / a are relatively prime to each other. Let P be the poset of all positive integers in which $a \leq b$ if a is a unitary divisor of b. Describe the Möbius function of P. That is, provide a formula for $\mu_{P}(a, b)$.
8. Prove that every graph with m edges contains a bipartite subgraph with at least $m / 2$ edges. (One approach is to compute the expected number of edges in a random bipartite subgraph, but there are also non-probabilistic proofs.)

