Combinatorics Ph.D. exam

1. Let $a_{1}, a_{2}, \cdots, a_{10}$ be positive integers not exceeding 100. Prove that there are disjoint, nonempty subsets S and T of [10] so that

$$
\sum_{i \in S} a_{i}=\sum_{j \in T} a_{j} .
$$

2. Prove that the number of permutations of length $n+1$ that have exactly two cycles is equal to the number of all cycles in all n ! permutations of length n. (For instance, if $n=3$, then both of these numbers are equal to 11.)
3. Let P be a convex polyhedron whose faces are all either a-gons or b gons, and whose vertices are each incident to three edges. Let p_{a}, p_{b}, and n respectively denote the number of a-gonal faces, b-gonal faces, and vertices of P. Prove that $p_{a}(6-a)+p_{b}(6-b)=12$.
4. A city has three high schools, each of them attended by n students. Each student knows exactly $n+1$ students who attend a high school different from his. Prove that we can choose three students, one from each school, so that each of them knows the other two.
5. Let L_{n} be the total number of leaves in all binary plane trees with n vertices. These are trees in which all non-leaf vertices have one or two children, and every child is a left child or a right child, even if it is an only child. So $L_{1}=1, L_{2}=2$, and $L_{3}=6$. Find an explicit formula for the numbers L_{n}.
6. Let $c: S \rightarrow\{0,1\}^{*}$ be a prefix-free code in which b_{i} codewords have length i. Prove that $\sum_{i} \frac{b_{i}}{2^{i}} \leq 1$.
7. Let T be a rooted non-plane 2-tree (that is, every non-leaf vertex has two children) with n leaves. For instance, for $n=4$, there are two such trees, one in which each leaf is at edge-distance two from the root, and one in which the edge-distances of the leaves from the root are 1,2 , 3 , and 3 . Let $\operatorname{sym}(T)$ be the number of non-leaf vertices v of T such that the two children of v are the roots of identical subtrees.
(a) How many automorphisms does T have?
(b) How many different ways are there to bijectively label the leaves of T with the numbers $1,2, \cdots, n$?
(c) Find an explicit formula for $\sum_{T} \frac{1}{|\operatorname{Aut}(T)|}$, where the sum is taken over all rooted non-plane 2-trees with n leaves. For example, for $n=4$, the two trees mentioned above have, respectively, eight and two automorphisms, so the requested sum is $\frac{1}{8}+\frac{1}{2}=\frac{5}{8}$.

Your answers to parts (a) and (b) can contain $\operatorname{sym}(T)$, but your answer to part (c) should not.
8. Let k be a fixed positive integer, and let $F_{k}(z)=\sum_{n \geq k} c(n, k) z^{n} / n$!, where $c(n, k)$ is the signless Stirling number of the first kind.
(a) Find $F_{k}(z)$ in an explicit form.
(b) Is $F_{k}(z)$ an algebraic power series over \mathbf{C} ?
(c) Is $F_{k}(z)$ a d-finite power series over \mathbf{C} ?

